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Abstract 

Background: The integration of Artificial Intelligence (AI) within cardiovascular imaging is transforming 

diagnostic processes across medical specialties, particularly in cardiology, radiology, and oncology. 

However, the complexities of AI models, notably those utilizing machine learning (ML) and deep learning 

(DL), raise significant ethical and legal concerns, particularly regarding their interpretability and decision-

making transparency. 

Methods: This review synthesizes existing literature on AI applications in cardiovascular imaging. It 

examines the methodologies employed, including supervised and unsupervised learning, deep learning 

frameworks such as convolutional neural networks (CNNs), and generative adversarial networks (GANs), 

and the implications for clinical practice. The analysis focuses on AI's ability to detect subtle patterns in 

imaging data, enhancing diagnostic accuracy and workflow efficiency. 

Results: AI technologies have demonstrated remarkable capabilities in identifying cardiovascular 

abnormalities and improving imaging quality. Applications include real-time detection of coronary artery 

stenosis from CT angiography and predictive models for cardiovascular events. However, the opaque nature 

of AI decision processes complicates clinical acceptance, as healthcare professionals often lack insight into 

the rationale behind AI-generated outputs. 

Conclusion: While AI holds promise for advancing diagnostic capabilities in cardiovascular care, the 

prevailing "black box" issue necessitates the development of explainable AI frameworks. Enhancing 

transparency and interpretability is crucial for fostering trust among clinicians and ensuring ethical 

implementation in clinical settings. Addressing these challenges is essential for the responsible integration 

of AI technologies into healthcare practices, ultimately improving patient outcomes. 
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1. Introduction 

The widespread incorporation of AI in cardiovascular imaging presents significant legal and ethical issues. 

The growing intricacy of AI models, especially those using machine learning (ML) and deep learning (DL), 

presents the difficulty of the "black box," a phrase that denotes the lack of transparency in AI decision-

making processes [1]. This task highlighted issues regarding the explicability and openness of AI systems, 

which are crucial for their ethical implementation and therapeutic acceptability [2]. Despite significant 

progress in AI-driven cardiovascular imaging, current evaluations mostly concentrate on technical 

improvements and clinical results, neglecting the decision-making processes of these AI models and the 

mechanisms that inform their outputs [3]. This gap highlights the essential need for thorough evaluations 

that examine these sophisticated technologies as well as their ethical and practical ramifications due to 

their ambiguous nature. Our objective is to provide doctors, researchers, and policymakers with an 

enhanced comprehension of AI's capabilities and constraints in cardiovascular healthcare. 

2. A comprehensive examination of artificial intelligence 

Artificial Intelligence entails the creation of computer algorithms that do intricate tasks emulating human 

cognitive processes. Machine learning (ML), a fundamental aspect of AI, allows systems to learn from data, 

enhance performance, and provide predictions [4]. Improvements in computer power and large data have 

accelerated the use of machine learning in healthcare [5]. The proliferation of smart devices and electronic 

medical records has increased data accessibility, hence improving the efficiency of machine learning 

algorithms despite the complexity of the data. Machine learning training may be categorized as either 

"supervised" or "unsupervised." In supervised training, a machine learning model is trained on a variety of 

inputs linked to a known output, which is monitored either according to an objective classification measure 

or by a domain expert [6]. Conversely, unsupervised training pertains to the creation of a model to 

investigate the patterns or clusters that are not delineated within datasets. The model is supplied just with 

unlabeled input data and does not acquire the ability to correlate data with an outcome [7]. 

 Deep learning (DL), a subset of machine learning (ML), is an essential subject in artificial 

intelligence (AI). Deep learning is designed to analyze data using extensive artificial neural networks that 

consist of several processing layers, analogous to the function of real neurons [8]. It has attained remarkable 

outcomes in complicated tasks requiring high-dimensional data, such as voice and picture recognition, as 

well as self-driving vehicles [9, 10]. Deep learning methods use many layers of concealed neurons to 

produce progressively abstract and nonlinear representations of the foundational data. This technique, 

termed "representation learning," is a crucial component of deep neural networks. After the collection of 

these representations, final output nodes are often used as inputs for logistic regression models or support 

vector machines (SVMs) to execute the final regression or classification tasks. Convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs) are two significant types of deep learning models 

used for supervised learning [9]. The fundamental difference between CNNs and RNNs is in their differing 

architectural configurations. In addition to these methodologies, a variety of deep neural network 

topologies is available. 

Convolutional Neural Networks (CNNs) mimic fully linked neural networks, consisting of neurons with 

modifiable weights and biases. Their efficacy arises from the ability to create local connections among 

pictures or signals [10]. These localized connections use nonlinear activation functions, enabling the 

conversion of representations into higher, more abstract forms. Moreover, the use of shared weights across 

layers, layer pooling, and the incorporation of many hidden layers facilitate the acquisition of complex 

functions. Conversely, RNNs are proficient at handling sequential data, including voice and language. RNNs 

include an extra concealed state vector, allowing them to maintain "memory" of past data observations, 

making them particularly effective for jobs containing sequential information [11, 12]. 
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In recent years, generative AI (GAI), a subset of artificial intelligence, reached its zenith with the emergence 

of novel language and picture models exhibiting unparalleled capabilities. GAI models are now capable of 

generating pictures or videos from textual input, modifying images based on text prompts, and producing 

text that engages in comprehensive dialogues. These models are also readily accessible, thus contributing 

to the rise in popularity of GAI among the general population. Consequently, this enabled non-technical 

people to explore application cases across many sectors and specializations. Generative Artificial 

Intelligence (GAI) may be traced back to the development of two particular types of networks: transformers, 

which are sophisticated variants of recurrent neural networks (RNNs), and generative adversarial networks 

(GANs), which use two distinct convolutional neural networks (CNNs) that are trained concurrently in an 

adversarial framework. 

Although RNNs are proficient at managing sequential data via a hidden state that encapsulates prior inputs, 

they encounter difficulties with long-range dependencies and parallel processing. The transformer 

addresses these constraints by implementing self-attention methods, enabling the model to assess the 

significance of each word in a sequence about all other words, rather than depending only on the sequential 

processing characteristic of RNNs. The design of the transformer obviates the need for recurrent 

connections, allowing it to process all tokens in a sequence concurrently. This parallelism greatly improves 

performance and enables the model to more effectively capture long-term interdependence. The use of 

multi-head self-attention in the transformer enables the model to concurrently concentrate on several 

segments of the sequence, resulting in a more profound and intricate comprehension of context. 

Transformers facilitated the extraordinary capabilities and esteemed prominence of Large Language 

Models (LLMs) such as ChatGPT today [13]. 

Generative Adversarial Networks (GANs) are very proficient at producing realistic data across several 

domains, including photos, video, and audio. Generative Adversarial Networks (GANs) include two neural 

networks—a generator and a discriminator—that are concurrently trained in a competitive framework. 

The generator tries to create data that emulates the actual data distribution, while the discriminator seeks 

to differentiate between real and created data. This adversarial mechanism compels the generator to 

provide progressively credible outputs, eventually yielding the creation of very realistic data [14]. 

3. Artificial Intelligence used in cardiovascular imaging 

Artificial intelligence can examine large volumes of visual data to detect nuanced patterns and 

abnormalities that may be missed by human specialists. AI-driven algorithms can precisely measure 

coronary artery stenosis from CT angiography in real time [15]. Neural networks may be trained with 

suitable data to identify early indicators of heart failure from chest X-rays [16]. Such applications may 

facilitate earlier and more precise diagnoses, allowing for faster treatments and improved patient 

outcomes. In addition to diagnostic functions, AI is enhancing imaging operations. Automated image 

capture, reconstruction, and segmentation activities reduce human error and accelerate the interpretation 

process [17]. Moreover, AI-driven prediction models may detect individuals at elevated risk for 

cardiovascular events using imaging data, facilitating proactive risk management measures [18]. 

Generative AI (GAI) is transforming cardiovascular imaging by improving image quality, automating 

intricate tasks, and enhancing diagnostic accuracy across multiple modalities [19]. In Cardiac MRI (CMR), 

GAI significantly accelerates image reconstruction and minimizes motion artifacts, with techniques 

developed by Ghodrati et al. [20] facilitating free-breathing scans, thereby increasing patient comfort and 

scan efficiency. Advanced reconstruction approaches, including variational neural networks (VNNs), 

provide high-quality imaging from undersampled data, markedly decreasing scan durations while 

maintaining accuracy [21]. This is especially advantageous for treatments requiring comprehensive 

volumetric and functional assessment of the heart, enhancing the accessibility and reliability of CMR for 

clinical decision-making. 

In Cardiac Computed Tomography (CCT), GAI-based methodologies have shown considerable potential in 

enhancing picture quality and diagnostic precision. AI-driven algorithms, shown by Itu et al.'s approach for 

Fractional Flow Reserve CT (FFR-CT), have significantly decreased analysis duration while preserving 
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excellent predicted accuracy, demonstrating AI's capacity to improve non-invasive coronary artery disease 

(CAD) assessment [22]. These AI-driven innovations are enhancing clinical processes and delivering more 

consistent and trustworthy diagnostic information, hence improving patient outcomes in cardiovascular 

care.  

Notwithstanding these advantages, the intricacy of AI models, especially deep learning techniques, presents 

considerable hurdles [23, 24]. In the realm of AI in radiology, "Black box" denotes scenarios in which the 

decision-making process of the AI model is obscure or not readily comprehensible to humans. This indicates 

that while the AI may provide outcomes or suggestions, the foundational thinking or processes that resulted 

in these findings remain opaque. Such indicators might present difficulties in clinical environments since 

physicians may lack complete comprehension or confidence in the AI's outputs, thereby affecting patient 

care [25, 26]. Comprehending and explaining AI's judgments is essential for clinical acceptability and ethical 

implementation [27]. 

To ensure the dependability of an AI system, it is essential to demonstrate that the system has 

comprehended the fundamental features and that its judgments are not predicated on extraneous 

correlations between input and output values in the training dataset [28]. Although one may mitigate the 

shortcomings of an AI methodology by meticulous selection of its model architecture and training 

algorithm, mistakes remain unavoidable [29]. 

The capacity of various AI models to comprehend created models differs markedly. The advent of advanced 

deep learning techniques is making decision reconstruction more challenging. The resultant models often 

operate as "black boxes," making it difficult for users to understand the underlying mechanisms [28]. Users 

comprehend simple input and output values, however, designers grasp the system's architecture and the 

approaches used to create the models [30]. Conversely, interpretable models are named white boxes, since 

they allocate weights to each characteristic, facilitating straightforward reading and interpretation; an 

intermediary category between the two is the gray box. Gray box models provide a degree of understanding 

of internal data processing [31]. 

It is essential to recognize that, in practice, a technique cannot always be distinctly categorized as a white, 

gray, or black box approach. Therefore, to tackle the problem of insufficient explainability, it is essential to 

develop explanation models for black-box models, which facilitate comprehension of their functioning. 

Figure 1 illustrates the black box dilemma in contrast to explainable AI. 

 

Figure 1. Visual depiction of the black box dilemma in contrast to explainable AI 

4. Challenges and constraints related to the nature of AI in cardiovascular imaging 

The opacity of AI's decision-making process poses a barrier to evaluating and comprehending its outcomes. 

Despite the encouraging outcomes of deep learning in cardiovascular imaging, they remain limited, and 

several difficulties must be addressed to enhance them [32]. Prevalent deep learning architectures, 

including convolutional neural networks (CNNs), generative adversarial networks (GANs), and recurrent 

neural networks (RNNs), lack interpretability about their results [33]. In the therapeutic environment, the 

primary difficulty is sometimes termed a black box. Consequently, the advancement of explainable machine 

learning systems in the healthcare sector is a paramount concern for computer scientists, policymakers, 

and consumers [34]. 
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Presently, there is no universally accepted definition of explainability, while there is an agreement on the 

significance of creating and using interpretable models [35]. Luo et al. [36] introduced a novel data 

preprocessing method for identifying cardiac illnesses using cardiac magnetic resonance (CMR) imaging, 

together with an innovative network architecture for estimating left ventricular capacity. Their research 

indicated that the approach exhibited great precision in forecasting left ventricular (LV) volumes. They 

identified a notable difficulty often faced in deep learning methodologies—the lack of interpretability for 

medical professionals. Attaining genuine interpretability in left ventricular volume prediction may, for 

instance, allow clinicians to pinpoint the exact pixels used in blood volume calculations. They underscored 

that further research must prioritize attaining interpretability in the direct prediction of left ventricular 

sizes [36]. 

Although AI algorithms may identify coronary artery disease, heart failure, conduction anomalies, and 

valvular heart disease, their lack of transparency raises questions about reliability, interpretability, and 

possible biases. To guarantee that AI's clinical integration conforms to practical healthcare standards, it is 

important to comprehend the underlying mechanisms of these algorithms. 

As previously detailed, artificial intelligence plays a crucial role in cardiovascular imaging, and 

comprehending its functionality is vital for successful deployment [37]. Evidence-based medicine has 

challenges due to the lack of transparency in machine learning models, particularly in medical imaging. In 

evidence-based medicine, clinical choices are guided by the most reliable evidence from scientific research, 

integrated with clinical knowledge and patient values. This methodology depends significantly on clear and 

interpretable data and models, enabling clinicians to comprehend the reasoning behind recommendations 

or judgments. Nonetheless, machine learning models, especially those used in computer vision imaging, 

often function as "black boxes," indicating that their underlying decision-making mechanisms are not 

readily interpretable or explicable. The absence of transparency is a considerable obstacle for evidence-

based medicine, as clinicians may find it difficult to trust or comprehend the outputs of these models, hence 

impeding their successful integration into clinical practice. In the realm of CVS imaging, where precise 

diagnosis and treatment choices are critical, the opacity of ML models might engender ambiguity or distrust 

among healthcare practitioners. Clinicians may be reluctant to depend on ML-based advice without a 

comprehensive comprehension of the model's reasoning process. 

A major problem pertains to mistake detection. AI systems may sometimes diverge from established norms 

of clinical decision-making [38]. Image classification techniques, especially convolutional neural networks, 

are notably vulnerable to unforeseen and atypical classification mistakes, resulting in challenges in 

understanding the causative elements affecting the correlations of these machine learning models [39]. 

This uncertainty may erode healthcare practitioners' faith in AI predictions, especially when they contradict 

traditional clinical judgment [40]. To enhance ML systems, it is essential to understand their decision-

making processes. AI explainability enables users to comprehend the decision-making processes of an AI 

model, extending beyond mere enhancement of AI performance [41]. 

The qualitative study demonstrates that physicians prioritize relevant and readily understandable 

information from ML models to make informed judgments. Research by Tonekaboni et al. shows that 

therapists do not inherently favor comprehending the causal factors behind ML decision-making. They 

favor clear and relevant information on the model's functionality within the realm of healthcare decision-

making. This data could involve confidence ratings, the rationale for a choice, and particulars customized 

to the individual clinical situation [27]. 

Lang and colleagues have noted that some very successful uses of AI in cardiovascular imaging may lack 

explainability. This has elicited apprehensions among many professionals who advocate for the cessation 

of inexplicable models owing to the substantial issues they may provide [38, 42]. In conclusion, while 

technical specialists may lack a thorough knowledge of machine learning (ML) algorithms, these systems 

must provide outputs or related information that allow users to evaluate predictions relevant to their 

clinical decision-making. Despite ongoing attempts to provide methods for contextualizing machine 
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learning predictions according to user requirements, attaining a complete understanding of artificial 

intelligence predictions continues to be a developing area of study [43]. 

5. Legal and ethical ramifications 

The opacity of AI systems presents considerable legal and ethical dilemmas in healthcare. Trust among 

clinicians is essential for the incorporation of AI into healthcare operations. The absence of explainability 

and transparency may result in ethical difficulties and undermine trust in AI for medical care [44]. Ethical 

concepts, including beneficence (acting in patients' best interests) and non-maleficence (avoiding injury), 

are pertinent when evaluating the possible hazards of using artificial intelligence (AI) platforms with 

opaque decision-making procedures. Visibility in algorithmic processes is essential for enhancing 

understanding [45]. In clinical environments, AI methodologies must provide rationales for their judgments 

to enhance doctors' trust in the precision of the outcomes [46]. The use of AI models characterized by 

limited transparency or interpretability creates problems with accountability, patient safety, and decision-

making processes. The legal implications of clinician trust are intertwined with responsibility and 

accountability. When doctors depend on AI-generated diagnoses or treatment suggestions without 

comprehending the underlying logic, it may exacerbate issues in instances of medical mistakes or negative 

results. Establishing responsibility is complicated when the decision-making processes of AI are unclear, 

perhaps leading to inquiries over culpability and legal liability [38]. 

Regrettably, several AI-driven cardiovascular imaging programs often demonstrate an inexplicable "black 

box" phenomenon. Assessing the clinical risks and advantages of these opaque models may be difficult, 

especially when biased decision-making poses a potential threat. The difficulty intensifies when 

differentiating between explicable and inexplicable AI models [30]. The use of opaque AI in healthcare 

settings has recently sparked much discussion. Some contend that legislation should impose stronger 

controls on unexplained models, whilst others assert that such rules may hinder innovation, and clinical 

uptake, and result in inferior patient outcomes [38]. The replication of clinical trials for technically obscure 

models is particularly difficult since commercial developers sometimes hesitate to provide their 

proprietary information [47]. It is crucial to acknowledge that the uncertainty associated with medical 

treatments is not a novel issue. It is crucial to acknowledge that the specific complexity of AI-driven 

cardiovascular imaging applications needs rigorous evaluation of the need for separate regulatory 

approaches. This includes compliance with validation plans and rules established by regulatory authorities, 

including the FDA, for the implementation of medical AI. [30]. 

Legal systems regulating inexplicable AI include medical malpractice, complicating physicians' ability to 

establish standards of care. The evolving environment requires a reassessment of professional standards 

and protocols. AI-driven care increasingly challenges conventional ethical principles, since automated 

decision-making affects comprehensibility [38, 48]. 

A further difficulty with unexplained AI is the notion of informed consent. Clinical specialists assert that 

informed permission is important before employing AI on patients. They contend that computer-aided 

detection programs have to be reported in reports, elucidating the rationale for any potential discrepancies. 

The dissemination of erroneous knowledge to patients and physicians on the hazards associated with AI 

algorithms may constitute a violation of the duty of care; hence, the sufficiency of information supplied to 

users is essential for informed decision-making. Regarding information, they question what must be 

communicated to the patient [49]. These difficulties grow more complex with the use of opaque AI. Patients 

have the right to comprehend and consent to the operations or treatments proposed by AI algorithms. 

Proposals have been suggested to mitigate legal and ethical concerns: one potential answer is the efficient 

extraction of interpretable characteristics for illness categorization via the use of deep learning techniques. 

Researchers developed methods for obtaining characteristics from deep learning models that are both 

precise for illness categorization and comprehensible to healthcare experts. These strategies use deep 

learning algorithms to find and extract significant and interpretable characteristics or patterns from 

medical pictures that indicate certain illnesses or disorders [50]. This method enables doctors to 
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comprehend the rationale behind the deep learning model's predictions by elucidating the aspects or 

attributes of the medical pictures that influence the classification process. 

An alternative method involves offering transparent elucidations of neural network outputs after their use 

in medical photos. GRADCAM, an acronym for Gradient-weighted Class Activation Mapping, is a method 

used in computer vision and deep learning to see and comprehend the decision-making processes of 

convolutional neural networks (CNNs). It operates by producing a heatmap that emphasizes the areas of an 

input picture that are most significant for CNN's classification determination. This heatmap is generated by 

calculating the gradient of the projected class score relative to the final convolutional layer of the CNN. 

GRADCAM elucidates the components of the input picture that most significantly influence the network's 

judgment, offering critical insights into the model's data processing and predictive mechanisms. This might 

substantially raise the comprehension of the judgments made by these networks and bolster the confidence 

and acceptance of AI technology among medical practitioners [45]. Zhang et al. illustrated the application 

of GRADCAM in a cardiovascular setting by utilizing attention supervision within a deep learning model to 

direct a multi-stream Convolutional Neural Network (CNN) to concentrate on particular myocardial 

segments for the automated detection of motion artifacts in cardiac T1-mapping [51]. Some critics have 

proposed that it may be essential to forgo inexplicable AI models. This results from the substantial issues 

associated with the use of such models, which may be challenging to elucidate or comprehend [47]. 

The European as well as American Multi-society Statement emphasizes many ethical issues and 

possibilities associated with AI. A structure has been proposed to provide practical guidance for AI 

practitioners. Nonetheless, the fast evolution of AI methodologies and instruments complicates the effort 

to sustain a thorough and current comprehension of the ethical framework [52, 53]. 

6. Progress in explainable AI methodologies and novel approaches for interpretability 

Model-based explanation pertains to models, such as linear regression or support vector machines, that are 

sufficiently basic for comprehension but smart enough to accurately represent the connection between 

inputs and outputs [43]. These models are often conventional machine learning models that are less 

complicated and more interpretable, unlike more intricate models including deep neural networks. Sparsity 

and simulability are two prominent instances of such models. Sparsity denotes models that constrain 

several coefficients to be precisely zero. This results in a sparse model in which just a select group of 

features substantially influences the output, rendering the model's internal structure explicable [54-57]. 

Simulatability refers to the capacity for a person to internally comprehend the model's calculations and 

decision-making process. In more straightforward models, such as linear regression, it is easy for an 

individual to understand the contribution of each attribute to the final result [58].  

Unlike model-based clarification, post hoc explanation involves training a neural network and then 

attempting to clarify the behavior of the resultant black box network, rather than imposing explainability 

on the neural network itself. Thus, the post hoc analysis is more comprehensible and user-friendly, 

applicable to any model irrespective of its intricacy [57]. Methods include the examination of acquired 

features, assessment of feature significance, analysis of feature interactions, and visual elucidation via 

saliency maps [59-62]. Nonetheless, the limitation of this strategy lies in its restricted ability to encapsulate 

the whole intricacy of a model. Consequently, the selection between these two options involves a 

compromise between precision and interpretability, contingent upon the particular context used. 

7. Summary 

The use of AI in cardiology imaging has substantial promise; nevertheless, it is impeded by the opaque 

character of many traditional AI models, which creates considerable obstacles to medical decision-making, 

comprehension, and confidence. Although AI has shown encouraging outcomes in identifying many 

cardiovascular disorders, the absence of transparency generates apprehensions about its dependability and 

utilization in evidence-based treatment. To address these problems, it is imperative to create explainable 

AI (XAI) tools that provide transparent knowledge of AI decision-making processes. These methodologies, 
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such as model based as well as post hoc explanations, might reconcile the disparity between intricate 

algorithms and the requirement for openness in healthcare environments. 

Furthermore, extensive education and training initiatives for healthcare workers are crucial to guarantee 

the efficient and ethical use of AI in practice. These programs should provide physicians with the 

understanding and skills needed to comprehend and use AI technologies while considering the ethical 

ramifications of their application. Furthermore, prioritizing patient engagement and informed permission 

is essential to preserve autonomy and confidence in AI-driven healthcare. Ultimately, the establishment of 

strong ethical and legal structures is essential for the secure and efficient incorporation of AI into healthcare 

procedures. By confronting these obstacles, we can guarantee the responsible use of AI technology, 

therefore improving patient outcomes and revolutionizing cardiovascular care. 
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الاصطناعي في تحسين دقة التشخيص في أمراض القلب والأشعة: تحليل معمق للآثار الأخلاقية والقانونية والسريرية عبر تخصصات  دور الذكاء  

 طبية متعددة 

 الملخص 

في التصوير القلبي الوعائي تحولاً في عمليات التشخيص عبر التخصصات الطبية، لا سيما في أمراض   (AI) يحُدث دمج الذكاء الاصطناعي :الخلفية

، يثير  (DL) والتعلم العميق (ML) القلب والأشعة والأورام. ومع ذلك، فإن تعقيد نماذج الذكاء الاصطناعي، لا سيما تلك التي تستخدم التعلم الآلي

 .مخاوف أخلاقية وقانونية كبيرة، خاصة فيما يتعلق بقابليتها للتفسير وشفافية اتخاذ القرار
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في    تجُمّع هذه المراجعة الأدبيات القائمة حول تطبيقات الذكاء الاصطناعي في التصوير القلبي الوعائي. وتتناول المنهجيات المستخدمة، بما :الطرق 

، وتداعياتها  (GANs) والشبكات التوليدية التنافسية (CNNs) ذلك التعلم المُشرف وغير المُشرف، وأطر التعلم العميق مثل الشبكات العصبية الالتفافية

شخيص  على الممارسة السريرية. يركز التحليل على قدرة الذكاء الاصطناعي على اكتشاف الأنماط الدقيقة في بيانات التصوير، مما يعُزز دقة الت

 .وكفاءة سير العمل

 أثبتت تقنيات الذكاء الاصطناعي قدرات مذهلة في تحديد الشذوذات القلبية الوعائية وتحسين جودة التصوير. تشمل التطبيقات الكشف الفوري :النتائج

ة لعمليات  لغامضعن تضيق الشرايين التاجية من تصوير الأوعية المقطعية التاجية والنماذج التنبؤية للأحداث القلبية الوعائية. ومع ذلك، فإن الطبيعة ا

رجات الذكاء  اتخاذ القرار في الذكاء الاصطناعي تعُقّد قبولها سريرياً، حيث يفتقر المتخصصون في الرعاية الصحية غالبًا إلى فهم المبررات وراء مخ

 .الاصطناعي

على الرغم من أن الذكاء الاصطناعي يحمل وعداً بتطوير قدرات التشخيص في رعاية القلب والأوعية الدموية، إلا أن مشكلة "الصندوق   :الخلاصة 

ضمان  ن الأطباء والأسود" الحالية تستلزم تطوير أطر ذكاء اصطناعي قابلة للتفسير. يعُد تعزيز الشفافية وقابلية التفسير أمرًا حيوياً لتعزيز الثقة بي

، مما  التنفيذ الأخلاقي في البيئات السريرية. معالجة هذه التحديات ضرورية للتكامل المسؤول لتقنيات الذكاء الاصطناعي في الممارسات الصحية

 .يحُسن في نهاية المطاف نتائج المرضى

 الذكاء الاصطناعي، التصوير القلبي الوعائي، دقة التشخيص، التعلم الآلي، القابلية للتفسير  :الكلمات المفتاحية 

 


