Review of Contemporary Philosophy ISSN: 1841-5261, e-ISSN: 2471-089X

Vol 22 (1), 2023 Pp 6331 - 6344



# Niemann-Pick Disease: Medical Management and Nursing Intervention Protocols-An Updated Review

- ¹- Mona Saleh Al Wadei,²-Samar Saleh Al Wadai,³-Ramadan Mutlaq Alatawi,⁴-Raed Mashni Alharbi,⁵-Rabab Ramadan Albaqami,⁶-Razan Faleh Dafer Alshahrani,⁻-Fawwaz Salman Al Atawi,³-Jamla Omar Alqahtani,⁴-Abdullah Ahmed Mohammed Qanawi,¹⁰-Abdullah Salem Saeed,¹¹-Sultan Abdullah Abdullalhadi Alazizi
  - Ksa, Ministry Of Health, Aseer Health Cluster Dhahran Al-Janoub General Hospital
  - $^{\rm 2.}$   $\,$  Ksa, Ministry Of Health, Aseer Health Cluster Dhahran Al-Janoub General Hospital
    - <sup>3.</sup> Ksa, Ministry Of Health, King Fahad Multi-Specialty Hospital
  - <sup>4.</sup> Ksa, Ministry Of Health, Medical Services Ministry Of Interior (Security Forces Hospital)
    - 5. Ksa, Ministry Of Health, East Jeddah General Hospital
  - 6. Ksa, Ministry Of Health, Asir Health Cluster Of Bisha Maternity And Paediatric Hospital Zone
    - 7. Ksa, Ministry Of Health, Phcc Beer Ben Hermas King Fahad Multi-Specialty Hospital
      - 8. Ksa, Ministry Of Health, Rawda Al-Ard Hospital
        - 9. College Of Dentistry, Jazan University
      - <sup>10</sup>Wadi Al-Dawasir General Hospital Ksa, Ministry Of Health,

#### **Abstract:**

**Background:** Niemann-Pick Disease (NPD) is a rare lysosomal storage disorder caused by deficiencies in specific enzymes that break down lipids, leading to their accumulation in various organs. The disease manifests in different subtypes, namely type A, B, C, and E, each with varying degrees of severity and age of onset. Type A is the most severe, resulting in early childhood death, while types B and C exhibit a more gradual progression. The clinical symptoms are diverse, including hepatosplenomegaly, neurological issues, and blood abnormalities. Understanding the pathophysiology, diagnosis, and management of NPD is essential for improving patient care.

**Aim:** This review aims to provide an updated perspective on the medical management and nursing intervention protocols for Niemann-Pick Disease, highlighting the diagnostic approaches, treatment options, and supportive care strategies that can help mitigate the symptoms and enhance the quality of life of affected individuals.

**Methods:** A comprehensive review of current literature was conducted, including studies on NPD's pathophysiology, clinical presentation, diagnostic methods, treatment modalities, and nursing care protocols. The review synthesizes findings from various sources, including clinical trials, case studies, and expert opinions.

**Results:** The management of NPD remains primarily symptomatic, with no cure currently available. Treatment strategies focus on enzyme replacement therapy (ERT), gene therapies, and supportive care such as physical therapy for neurological symptoms, respiratory support for lung disease, and

<sup>&</sup>lt;sup>11</sup>Ksa, Ministry Of Health, King Khalid Hospital In Al-Kharj

blood transfusions for hematological complications. Early diagnosis, through enzyme assays and genetic testing, is crucial for optimal patient management. Nursing interventions play a vital role in providing holistic care to patients, addressing both physical and psychological needs.

**Conclusion:** Effective management of Niemann-Pick Disease requires a multidisciplinary approach that includes early diagnosis, symptom management, and ongoing supportive care. Although advancements such as enzyme replacement therapies show promise, research into more effective treatments, including gene therapy, is ongoing. Nurses play a pivotal role in ensuring comprehensive care and supporting patients and families through the challenges of disease.

**Keywords:** Niemann-Pick Disease, lysosomal storage disorders, enzyme replacement therapy, nursing care, genetic testing, symptom management.

**Received:** 05 october 2023 **Revised:** 19 November 2023 **Accepted:** 02 December 2023

#### **Introduction:**

Lysosomal storage diseases are a group of inherited metabolic disorders that arise due to deficiencies in specific lysosomal enzymes. These enzymes are involved in the breakdown of various biomolecules, including lipids, which are essential for normal cellular functioning. Niemann-Pick disease (NPD) is a prominent example of these disorders, caused by a deficiency of the enzyme acid sphingomyelinase (ASMD). This enzyme catalyzes the hydrolysis of sphingomyelin (SM) into ceramide and phosphocholine, and its deficiency leads to the accumulation of SM and its precursor lipids in lysosomes, predominantly within macrophages. The accumulation of these lipids in various organs, including the liver, spleen, lungs, and brain, results in a wide range of clinical manifestations. These include hepatosplenomegaly (enlargement of the liver and spleen), blood cell abnormalities, lung disease, and neurological symptoms. NPD is traditionally classified into four subtypes: type A, type B, type C, and type E. Type A, also known as the infantile neurovisceral form, is the most severe form, characterized by very low acid sphingomyelinase activity and resulting in rapid neurological deterioration, usually leading to death before the age of three. Type B, on the other hand, is less severe, with variable visceral symptoms and minimal neurological involvement. Type C presents with a more heterogeneous clinical presentation, often involving systemic, neurological, and psychiatric symptoms, and can manifest at various stages of life. Type E is the least common form, typically developing in adulthood and presenting with primarily neurological symptoms such as cognitive or motor developmental delays and dystonia (1).

## **Etiology of Niemann-Pick Disease**

Niemann-Pick disease (NPD) is an autosomal recessive genetic disorder, meaning that an individual must inherit two mutated copies of the relevant gene—one from each parent—for the disease to manifest. Types A and B of NPD are caused by mutations in the

sphingomyelin phosphodiesterase 1 (SMPD1) gene, which encodes the enzyme acid sphingomyelinase (ASM). More than 180 distinct mutations in the SMPD1 gene have been identified, leading to varying degrees of enzyme deficiency. These mutations result in impaired ASM activity, which is critical for the breakdown of sphingomyelin in lysosomes. As a result, sphingomyelin and its precursor lipids accumulate within lysosomes, leading to cellular and organ damage. In NPD type C, the disease results from mutations in either the NPC1 gene, located on chromosome 18, or the NPC2 gene, located on chromosome 14. These mutations cause defects in the proteins encoded by the NPC1 and NPC2 genes, which are involved in the transport of lipids, such as cholesterol, within the cell. Specifically, these proteins are necessary for the proper movement of cholesterol out of lysosomes. When the NPC1 and/or NPC2 proteins are nonfunctional, cholesterol and other lipids build up within lysosomes, leading to toxic accumulation, which disrupts normal cellular function and leads to the progressive damage of various organs, particularly the liver, spleen, and brain (2).

# **Epidemiology of Niemann-Pick Disease**

Niemann-Pick disease (NPD) is a rare disorder, with an overall prevalence of about 1 in 250,000 individuals for types A and B. However, this prevalence can vary by population. For example, in individuals of Ashkenazi Jewish descent, the prevalence of NPD is much higher, with an incidence of approximately 1 in 40,000. This increased prevalence in specific ethnic groups may be due to founder effects and genetic bottlenecks. NPD type C has a slightly higher prevalence, affecting approximately 1 in 150,000 individuals. The incidence of type C also varies geographically, with a notably higher prevalence observed in certain populations, such as those of French-Acadian descent in Nova Scotia, Canada. These regional differences in prevalence highlight the importance of genetic factors in the distribution of the disease. Despite these regional variations, NPD remains a rare genetic disorder worldwide. As the disease is inherited in an autosomal recessive manner, individuals must inherit two mutated copies of the relevant gene from both parents in order for the disease to manifest. Carrier screening and genetic counseling are crucial for individuals in high-risk populations, as early identification of carriers can aid in genetic planning and prevent the transmission of the disorder to future generations (3).

#### Pathophysiology of Niemann-Pick Disease

Niemann-Pick disease types A and B are caused by mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene, resulting in significantly reduced activity of acid sphingomyelinase (ASM). ASM is an enzyme found primarily in lysosomes, and it plays a critical role in breaking down sphingomyelin (SM) into ceramide and phosphocholine. In the absence of sufficient ASM activity, SM and its precursor lipids accumulate within lysosomes, leading to cellular dysfunction and damage. More than 180 mutations in the SMPD1 gene have been identified, some of which lead to partial ASM activity, which may explain the variability in disease severity between NPD types A and B. The mutations can be of various

types, including missense, nonsense, frameshift, and frame deletions, and their distribution varies by geographic region. Allelic heterogeneity contributes to the different phenotypic presentations of NPD, with some mutations leading to more severe outcomes than others. In NPD type C, the pathophysiology is different. It is caused by mutations in either the NPC1 or NPC2 gene, which encode proteins involved in the transport and mobilization of cholesterol and other sterols in the cell. The NPC1 protein is the predominant subtype, affecting approximately 95% of patients, with over 30 distinct mutations identified. These proteins are located in the late endosomes and lysosomes, where they help in the transport of cholesterol out of these organelles. When the function of these proteins is lost or impaired due to mutations, cholesterol accumulates in lysosomes, leading to toxic buildup and progressive cellular damage. This results in the systemic, neurological, and psychiatric manifestations of NPC, with damage to multiple organs, including the brain, liver, and spleen (4).

# Histopathology of Niemann-Pick Disease

The histopathological features of Niemann-Pick disease (NPD) are closely linked to the accumulation of sphingomyelin and cholesterol in the affected cells. This accumulation leads to cell enlargement, with affected cells sometimes reaching up to 90 micrometers in diameter. The lipid buildup within these cells, primarily macrophages, creates a characteristic appearance. Histologically, these lipid-laden cells are often referred to as foam cells due to the foamy appearance of their cytoplasm. The cytoplasm contains numerous small vacuoles of relatively uniform size, which contribute to this appearance. This foamy cytoplasm results from the accumulation of lipids, particularly sphingomyelin, within the cell. Electron microscopy further aids in the diagnosis by revealing electron-opaque, concentrically laminated inclusions within the macrophage cytoplasm. These inclusions are indicative of the disrupted lipid processing occurring within the cells, highlighting the pathophysiology of NPD. The hallmark finding of lipid-laden macrophages in the bone marrow and other organs reflects the systemic nature of the disorder, where these macrophages are seen depositing in tissues such as the liver, spleen, lungs, and brain, leading to the clinical manifestations associated with NPD (1).

# History and Physical Examination in Niemann-Pick Disease

The clinical presentation of Niemann-Pick disease (NPD) varies according to its subtype, but several common features can be observed across the different forms of the disorder. In NPD type A, symptoms typically manifest in the first few months of life, usually three months of age. The initial presentation includes hepatosplenomegaly (enlarged liver and spleen) and growth retardation. By the age of one, neurological symptoms, such as psychomotor retardation and regression of developmental milestones, are commonly observed. One of the defining features of NPD type A is the presence of a cherry-red spot in the eye, which is present in all affected individuals. Unfortunately, most children with type A

do not survive beyond early childhood due to the severity of the disease. NPD type B, on the other hand, presents later in childhood and tends to be less severe than type A. These patients typically exhibit hepatosplenomegaly, interstitial lung disease (ILD), recurrent lung infections, thrombocytopenia, and slowed bone growth. Approximately one-third of patients with type B NPD may also develop neurological symptoms, including the cherry-red spot and other neurological findings. NPD type C is more heterogeneous and can present at any age, although it most commonly affects children. This subtype is characterized by a variety of neurological symptoms, including ataxia, dystonia, supranuclear gaze palsy (SNGP), dysphonia, dysphagia, and severe liver and lung disease. The clinical findings often include multiple organ systems, and as the disease progresses, it can result in a decline in neurological function and impaired organ function. Upon physical examination, several key findings may be observed across the systems. Gastrointestinal findings include hepatomegaly (enlarged liver) and splenomegaly (enlarged spleen). Pulmonary symptoms include interstitial lung disease, decreased diffusion capacity, and recurrent lung infections. Integumentary findings may include jaundice, while cardiovascular manifestations can include thrombocytopenia and hypercholesterolemia. Rheumatologic findings include impaired growth of long bones, slowed bone mineralization, and coxa vara. Ocular findings include the characteristic cherry-red spot on the fovea centralis, often surrounded by a pale or white macula, as well as corneal opacification and brown discoloration of the anterior lens capsule. Neurologically, patients with NPD may exhibit ataxia, dystonia, dysphagia, dysphonia, and developmental delays or regression. Other neurological signs may include mental retardation, peripheral neuropathy, gelastic catatonia, SNGP, and tremors, reflecting the widespread neurological involvement seen in NPD (7, 8).

# **Evaluation of Niemann-Pick Disease (NPD)**

When NPD type A or B is suspected, the first step in diagnosis is to measure the activity of the enzyme acid sphingomyelinase (ASM) in leukocytes through a blood sample. Low enzyme activity can indicate the presence of the disease, and if the results are inconclusive, further genetic testing can confirm the diagnosis by identifying mutations in the SMPD1 gene, which causes these types of NPD. In cases of NPD type C, the diagnostic process involves taking a skin biopsy and staining it with Filipin, a special dye that binds to cholesterol, to evaluate the enzyme activity. Additionally, DNA testing is performed to identify mutations in the NPC1 or NPC2 genes, which are responsible for type C disease. Once a diagnosis is confirmed, clinicians should monitor disease progression across various organ systems to assess the extent of the disease. For the liver, periodic measurements of liver enzymes should be conducted, and if severe liver disease is suspected, liver elastography or biopsy is recommended. Pulmonary function should be evaluated periodically through spirometry, and high-resolution computed tomography (HRCT) is used to assess interstitial lung disease (ILD). Hematological monitoring includes measuring platelet counts and spleen volume, while cardiovascular evaluation involves checking HDL and LDL cholesterol levels.

Neurological assessments should be thorough, including complete neurological exams at each visit, and fundoscopy should be performed to check for the characteristic cherry-red spot in the macula. Exercise intolerance tests and a pain and fatigue questionnaire are used to assess physical limitations. Finally, the severity of the disease can be measured by assessing sphingomyelin levels, macrophage markers, and oxysterols (9, 10, 11).

# Treatment and Management of Niemann-Pick Disease

Currently, there is no cure for NPD types A and B, and the mainstay of treatment is supportive care. In these cases, the goal is to manage symptoms and improve quality of life. Physicians focus on controlling blood lipid levels with statins and monitoring liver function to prevent complications. For thrombocytopenia-induced bleeding, blood product transfusions may be necessary. For patients with interstitial lung disease (ILD), supplemental oxygen is provided to help manage respiratory symptoms. While organ transplants have been attempted, they have had limited success in treating NPD. Enzyme replacement therapies (ERT) and gene therapies are in development and show promise as potential future treatments, although they are not yet widely available. For NPD type C, supportive care remains the primary approach. Physical therapy is essential to manage neurological symptoms such as ataxia and dystonia, while analgesics are used to address pain. Miglustat, a glucosylceramide synthase inhibitor, is approved for use in Europe, Canada, and Japan, where it has been shown to reduce the production of glucocerebroside, a molecule involved in both Niemann-Pick disease and Gaucher disease. However, Miglustat is not yet approved in the United States, limiting its availability for patients there. Although research is ongoing, treatment options for NPD types A, B, and C remain focused on symptom management and the development of advanced therapies, including gene therapies and enzyme replacement (12, 13).

## Differential Diagnosis of Niemann-Pick Disease (NPD)

When diagnosing Niemann-Pick disease (NPD), several other lysosomal storage disorders should be considered in the differential diagnosis, particularly Gaucher disease, Tay-Sachs disease, and Metachromatic leukodystrophy. Gaucher disease, like NPD, presents with hepatosplenomegaly and cytopenias, but it is distinguished by the presence of bone pain and lesions. The underlying enzyme deficiency in Gaucher disease is glucocerebrosidase, which leads to the accumulation of glucocerebroside rather than sphingomyelin, the accumulation seen in NPD. Tay-Sachs disease, although not presenting with hepatosplenomegaly, is characterized by neurodegeneration, developmental delay, and the classic cherry-red spot on the macula, with a deficiency in the enzyme hexosaminidase A causing an accumulation of GM2 gangliosides. Metachromatic leukodystrophy, another lysosomal storage disorder, causes central and peripheral demyelination and often presents with ataxia or other neurological symptoms, which can also overlap with NPD symptoms. Given these similarities, it is critical to differentiate between these disorders through enzyme

testing, genetic testing, and clinical evaluation to ensure accurate diagnosis and management. In addition to these lysosomal storage diseases, other conditions affecting the liver and brain should also be considered based on the presenting clinical symptoms (14).

## **Prognosis of Niemann-Pick Disease**

The prognosis of Niemann-Pick disease varies significantly depending on the type of the disease and the age of onset. For type A, the prognosis is generally poor, with affected children rarely surviving beyond 4 years of age due to severe neurological and systemic complications. Type B presents with a somewhat better prognosis, as children may survive into late childhood or early adulthood; however, they often experience significant health challenges due to disease-related complications, resulting in a reduced quality of life. Type C's prognosis is more variable, depending largely on the age of onset. In cases where symptoms appear in infancy, the prognosis is very poor, with survival beyond 5 years being uncommon. However, if symptoms emerge after the age of 5, individuals may live into their late teens or even early twenties, though the severity and progression of the disease can differ between patients. As with other types of NPD, the progression and outlook depend on the individual's clinical presentation and disease severity (15).

# **Complications of Niemann-Pick Disease**

Niemann-Pick disease is progressive and often results in various complications that worsen over time. Hepatic involvement can lead to fulminant hepatic failure, requiring intensive monitoring and intervention. Pulmonary complications are also common, and deterioration of lung function may lead to respiratory insufficiency, which significantly impacts the patient's quality of life. Neurologically, the disease can cause progressive neurodegeneration, resulting in cognitive decline, dementia, seizures, and even psychiatric symptoms, such as schizophrenia-like psychosis. Severe thrombocytopenia, a common feature of NPD, increases the risk of bleeding, both internally and externally, leading to potential life-threatening hemorrhages. Cardiovascular complications, including coronary artery disease and valvular heart disease, can arise as the disease progresses, further affecting overall health. Additionally, skeletal deformities are frequent, with bone marrow cavities becoming enlarged, cortical bone thinning, and conditions like coxa vara leading to mobility issues and discomfort. As the disease progresses, these complications require multidisciplinary management to address the various systemic effects of NPD (16).

#### Patient Education for Niemann-Pick Disease

Although Niemann-Pick disease is currently fatal and often lacks definitive treatment, early recognition can help slow its progression and manage its complications. As an autosomal recessive (AR) disorder, Niemann-Pick disease requires that both parents either be affected or carriers of the disease genes for it to be passed on to their children. Carriers of an autosomal recessive disease do not exhibit symptoms but can transmit the defective gene

to their offspring. Therefore, if both parents are carriers, each pregnancy carries a 25% risk of the child inheriting the disease. For families with a history or risk of Niemann-Pick disease, genetic counseling is recommended, and genetic testing should be offered to determine carrier status. Education about the genetic basis of the disease and the importance of early diagnosis can help families make informed decisions regarding family planning, prenatal testing, and management strategies (9).

## **Enhancing Healthcare Team Outcomes for Niemann-Pick Disease**

Managing Niemann-Pick disease requires an interprofessional approach due to the widespread impact on multiple organs and the high morbidity and mortality associated with the disease, regardless of treatment. An effective management strategy involves collaboration among a range of healthcare professionals, including hepatologists or gastroenterologists, neurologists, endocrinologists, and genetic counselors. In addition to these specialists, the involvement of nurses, social workers, and family care providers is essential for comprehensive care. A lead consultant should coordinate patient management, ensuring all aspects of the disease are addressed, including genetic counseling and emotional support for the patient and their family. Social workers play a crucial role in ensuring caregivers and patients have access to necessary resources, including financial support, and that emotional and psychological needs are met. Nurses must educate patients about the importance of treatment adherence to prevent or mitigate severe complications and track the effectiveness of ongoing therapies. Pharmacists may have an increasingly significant role in the future, especially as gene therapy and enzyme replacement therapy options emerge. Collaborative efforts among the healthcare team will facilitate a deeper understanding of the disease's progression and more effective management, leading to improved patient outcomes (10).

## **Nursing Intervention Protocols:**

Niemann-Pick disease (NPD) is a progressive and devastating disorder that impacts multiple organ systems, including the liver, lungs, brain, and spleen. It is primarily categorized into three types—A, B, and C—each presenting with distinct clinical manifestations and varying prognoses. Nursing interventions for individuals with NPD are critical to enhancing quality of life, managing symptoms, and preventing complications. The role of nursing in the care of patients with NPD spans from early diagnosis to ongoing support, encompassing various protocols designed to address the specific needs of these patients. Given the complex and progressive nature of this disease, a multidisciplinary approach is required, with nursing being a cornerstone in providing holistic and supportive care.

## **Assessment and Early Diagnosis**

A critical component of nursing care in NPD is the prompt identification and monitoring of symptoms. Early diagnosis is essential for initiating supportive care and slowing the disease's progression. Nurses should be vigilant in identifying common signs of NPD, including hepatosplenomegaly, developmental delays, and the characteristic cherry-red spot in the macula. Regular assessments, including neurological evaluations, developmental milestone tracking, and eye examinations, should be incorporated into routine care. Nurses should collaborate with medical teams to ensure that enzyme activity tests, genetic testing, and other diagnostic measures are promptly conducted, particularly for NPD types A, B, and C (9).

## **Symptom Management**

Management of symptoms is central to nursing interventions in NPD. Given the involvement of multiple systems, interventions should focus on alleviating symptoms, minimizing complications, and supporting organ function. For patients with type A or B NPD, who often experience significant neurological and pulmonary involvement, a comprehensive approach is needed.

- 1. **Neurological Care**: Neurological deterioration is a hallmark feature of NPD, particularly in types A and C, which present with progressive neurodegeneration, ataxia, dystonia, and cognitive decline. Nurses should monitor changes in neurological status through routine assessments of cognitive function, motor skills, and developmental milestones. Early interventions such as physical therapy, occupational therapy, and speech therapy should be coordinated to help manage the neurological decline and maintain function for as long as possible. Furthermore, nursing care should include emotional and psychological support for both patients and their families, as the progressive nature of the disease can lead to significant mental health challenges.
- 2. **Pulmonary Care**: Interstitial lung disease (ILD) is a common manifestation of NPD, especially in type B and C, causing recurrent respiratory infections and reduced lung function. Nurses should regularly assess pulmonary function using spirometry and monitor for signs of respiratory distress. Providing oxygen therapy may be necessary for patients with hypoxia. In addition, chest physiotherapy may help to manage the effects of ILD, promoting airway clearance and improving respiratory function. Regular assessments of vital signs, particularly respiratory rate and oxygen saturation levels are critical in ensuring timely intervention if respiratory failure occurs.
- 3. **Hematologic Management**: Thrombocytopenia is frequently observed in NPD, leading to an increased risk of bleeding. Nurses should closely monitor platelet counts and be prepared to manage bleeding episodes through appropriate interventions such as administering blood products when necessary. Educating patients and

caregivers about the importance of avoiding activities that may cause trauma, and the signs of bleeding is crucial for preventing complications. Nurses should also collaborate with the medical team to monitor and manage anemia and other cytopenias that may arise as a result of the disease's progression.

- 4. **Gastrointestinal and Hepatic Care**: Hepatomegaly and splenomegaly are characteristic of NPD, particularly in type A and B. Nurses should regularly monitor liver function through liver enzyme tests and be vigilant for signs of liver failure. For patients with severe hepatic involvement, liver elastography or biopsy may be necessary for further evaluation. Nurses should be alert to signs of jaundice, ascites, or hepatic encephalopathy, which may indicate worsening liver function. In addition to medical interventions, dietary modifications, including the use of low-fat diets and nutritional supplements, may help to manage symptoms related to liver dysfunction.
- 5. **Cardiovascular Care**: Cardiovascular complications in NPD, such as hypercholesterolemia and coronary artery disease, may arise as the disease progresses. Nurses should monitor lipid profiles and ensure that cholesterol levels are managed through statins or other medications as prescribed by the medical team. Regular cardiovascular assessments, including blood pressure and heart rate monitoring, are essential to detect any early signs of heart disease. Nurses should also be trained to recognize symptoms of cardiovascular compromise, such as chest pain or shortness of breath, and intervene promptly.

#### **Pain and Fatigue Management**

Pain and fatigue are significant issues for patients with NPD, particularly as neurodegeneration progresses. Nurses should assess pain levels using appropriate pain scales, such as the Wong-Baker Faces Pain Rating Scale, and provide pharmacological and non-pharmacological interventions. Pain management protocols should include the administration of analgesics, with careful attention to the patient's renal and hepatic function when choosing medications. Additionally, nurses should address fatigue by promoting rest, providing energy conservation techniques, and offering emotional support to help patients and their families cope with the challenges of the disease.

## **Psychosocial Support and Family Education**

Given the progressive and often fatal nature of NPD, providing psychosocial support to patients and their families is an essential component of nursing care. Nurses should work closely with social workers, genetic counselors, and mental health professionals to offer emotional support and counseling for both patients and caregivers. This support should include providing information about the disease, its prognosis, and available treatment options, as well as offering guidance on coping strategies. Family education is crucial, as it can help families prepare for the challenges associated with caring for a child with a life-

limiting condition. Nurses should also provide training on disease management and symptom monitoring to help caregivers provide the best possible care at home.

# **Collaboration with Multidisciplinary Team**

Niemann-Pick disease requires a collaborative, team-based approach to care. Nurses must work closely with a multidisciplinary team, including hepatologists, neurologists, pulmonologists, geneticists, and physical therapists, to ensure comprehensive care. Coordinating care across these various disciplines helps to address the complex and multisystemic nature of NPD, ensuring that all aspects of the patient's health are managed effectively. Regular case conferences and communication between healthcare providers are essential to ensure that the patient receives the best possible care.

#### **End-of-Life Care**

As Niemann-Pick disease progresses, many patients reach a point where end-of-life care becomes a critical consideration. Nurses should be prepared to discuss end-of-life issues with families and provide compassionate palliative care. This includes managing symptoms such as pain and respiratory distress, offering psychological support, and assisting families with decisions regarding hospice care or organ donation. Nurses play a key role in ensuring that patients' and families' wishes are respected, and that quality of life is maintained throughout the end-of-life process. Nursing interventions for Niemann-Pick disease are multifaceted, focusing on early diagnosis, symptom management, psychosocial support, and collaboration with the multidisciplinary team. Given the progressive and often fatal nature of the disease, it is essential for nurses to be proactive in monitoring symptoms, providing supportive care, and addressing the emotional and psychological needs of both patients and their families. By adhering to comprehensive nursing protocols, nurses can significantly improve the quality of life for individuals affected by Niemann-Pick disease, helping to mitigate complications and enhance the overall patient experience.

#### **Conclusion:**

Niemann-Pick Disease (NPD) represents a group of rare lysosomal storage disorders characterized by lipid accumulation in various organs, leading to progressive damage. The disease is divided into four types: A, B, C, and E, with type A being the most severe, presenting in infancy and often leading to death within a few years. Types B and C present with more gradual onset and variable symptoms, which can affect different organ systems, including the liver, spleen, lungs, and brain. NPD is inherited in an autosomal recessive pattern, with mutations in specific genes leading to enzyme deficiencies that impede lipid breakdown, causing accumulation in lysosomes. The pathophysiology of NPD involves either the accumulation of sphingomyelin in the case of types A and B due to acid sphingomyelinase deficiency, or cholesterol and other lipids in type C, where mutations in NPC1 or NPC2 genes impair lipid transport. This results in organ enlargement, neurological deterioration, and

other systemic complications that severely impact the quality of life. Diagnosis is often based on enzyme activity tests, genetic testing, and histopathological analysis. The clinical manifestations vary by subtype, but common symptoms include hepatosplenomegaly, neurological dysfunction, and blood cell abnormalities. Currently, there is no definitive cure for the NPD. The treatment approach is primarily supportive, aiming to manage symptoms and slow disease progression. For NPD types A and B, this includes monitoring liver function, managing respiratory symptoms, and addressing hematological issues with blood transfusions or medications like statins. For type C, treatments like Miglustat show promise, although its availability is limited. Research into gene therapies and enzyme replacement therapies is ongoing, with potential for future breakthroughs. Nurses play a crucial role in managing NPD by providing supportive care, ensuring early diagnosis, and addressing the complex needs of patients. This involves coordinating multidisciplinary care teams, providing physical and emotional support, and helping families cope with the challenges of the disease. Comprehensive care plans that address both physical and psychological needs are essential to improving patient outcomes and enhancing quality of life. In conclusion, while the lack of a cure remains a challenge, ongoing research into advanced therapies, including gene therapy and enzyme replacement, offers hope for better treatment options in the future. The multidisciplinary approach, with an emphasis on nursing interventions, will continue to be central in managing NPD and improving the lives of those affected by this devastating disease.

#### **References:**

- 1. Thurm A, Chlebowski C, Joseph L, Farmer C, Adedipe D, Weiss M, Wiggs E, Farhat N, Bianconi S, Berry-Kravis E, Porter FD. Neurodevelopmental Characterization of Young Children Diagnosed with Niemann-Pick Disease, Type C1. J Dev Behav Pediatr. 2020 Jun/Jul;41(5):388-396.
- 2. Eskes ECB, Sjouke B, Vaz FM, Goorden SMI, van Kuilenburg ABP, Aerts JMFG, Hollak CEM. Biochemical and imaging parameters in acid sphingomyelinase deficiency: Potential utility as biomarkers. Mol Genet Metab. 2020 May;130(1):16-26.
- 3. Xu Y, Zhang Q, Tan L, Xie X, Zhao Y. The characteristics and biological significance of NPC2: Mutation and disease. Mutat Res Rev Mutat Res. 2019 Oct-Dec;782:108284.
- 4. Bianconi SE, Hammond DI, Farhat NY, Dang Do A, Jenkins K, Cougnoux A, Martin K, Porter FD. Evaluation of age of death in Niemann-Pick disease, type C: Utility of disease support group websites to understand natural history. Mol Genet Metab. 2019 Apr;126(4):466-469.
- 5. Pará C, Bose P, Pshezhetsky AV. Neuropathophysiology of Lysosomal Storage Diseases: Synaptic Dysfunction as a Starting Point for Disease Progression. J Clin Med. 2020 Feb 25;9(3)
- 6. Cawley NX, Sojka C, Cougnoux A, Lyons AT, Nicoli ER, Wassif CA, Porter FD. Abnormal LAMP1 glycosylation may play a role in Niemann-Pick disease, type C pathology. PLoS One. 2020;15(1):e0227829.
- 7. Kresojević N, Mandić-Stojmenović G, Dobričić V, Petrović I, Brajković L, Stefanova E, Svetel M, Kostić V. Very Late-Onset Niemann Pick Type C Disease: Example of Progressive Supranuclear Palsy Look-Alike Disorder. Mov Disord Clin Pract. 2020 Feb;7(2):211-214.
- 8. Patterson M. Niemann-Pick Disease Type C. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. University of Washington, Seattle; Seattle (WA): Jan 26, 2000.

- 9. Warren M, Shimura M, Wartchow EP, Yano S. Use of electron microscopy when screening liver biopsies from neonates and infants: experience from a single tertiary children's hospital (1991-2017). Ultrastruct Pathol. 2020 Jan 02;44(1):32-41.
- 10. Chugani HT. Positron Emission Tomography in Pediatric Neurodegenerative Disorders. Pediatr Neurol. 2019 Nov;100:12-25.
- 11. Hammond N, Munkacsi AB, Sturley SL. The complexity of a monogenic neurodegenerative disease: More than two decades of therapeutic driven research into Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Aug;1864(8):1109-1123.
- 12. Aldosari MH, de Vries RP, Rodriguez LR, Hesen NA, Beztsinna N, van Kuilenburg ABP, Hollak CEM, Schellekens H, Mastrobattista E. Liposome-targeted recombinant human acid sphingomyelinase: Production, formulation, and in vitro evaluation. Eur J Pharm Biopharm. 2019 Apr;137:185-195.
- 13. Pineda M, Walterfang M, Patterson MC. Miglustat in Niemann-Pick disease type C patients: a review. Orphanet J Rare Dis. 2018 Aug 15;13(1):140.
- 14. Breiden B, Sandhoff K. Lysosomal Glycosphingolipid Storage Diseases. Annu Rev Biochem. 2019 Jun 20;88:461-485.
- 15. Chen KJ, Jin RM, Shi CC, Ge RL, Hu L, Zou QF, Cai QY, Jin GZ, Wang K. The prognostic value of Niemann-Pick C1-like protein 1 and Niemann-Pick disease type C2 in hepatocellular carcinoma. J Cancer. 2018;9(3):556-563.
- 16. Jezela-Stanek A, Chorostowska-Wynimko J, Tylki-Szymańska A. Pulmonary involvement in selected lysosomal storage diseases and the impact of enzyme replacement therapy: A state-of-the art review. Clin Respir J. 2020 May;14(5):422-429.
- 17. Bajwa, H., & Azhar, W. (2023). Niemann-pick disease. In *StatPearls* [*Internet*]. StatPearls Publishing.
- مرض نيومان-بيك: إدارة طبية وبروتوكولات تدخل التمريض مراجعة محدثة .18

#### الملخص:

الخلفية: مرض نيومان-بيك (NPD) هو اضطراب نادر في تخزين الليزوزومات ناتج عن نقص في إنزيمات معينة تكسر الدهون، مما يؤدي إلى تراكمها في مختلف الأعضاء. يظهر المرض في أنواع فرعية مختلفة، وهي النوع B و B و C و B و B و B و B و B و B و B و B و B و B و B و B أنواع فرعية مختلفة، وهي النوع B و B و B و B أنواع فرعية مختلفة، وهي النوع B و وأد وفاة يختلف كل نوع من حيث درجة شدة المرض وعمر بدء ظهور الأعراض. يعتبر النوع B هو الأكثر شدة، حيث يؤدي إلى وفاة الأطفال في مرحلة الطفولة المبكرة، بينما يظهر النوعان B و B تقدمًا تدريجيًا. تشمل الأعراض السريرية تنوعًا، مثل تضخم الكبد والطحال، ومشاكل عصبية، واضطرابات دموية. يعد فهم الفسيولوجيا المرضية والتشخيص وإدارة المرض أمرًا ضروريًا لتحسين رعاية المرضى.

الهدف: تهدف هذه المراجعة إلى تقديم نظرة محدثة حول إدارة مرض نيومان-بيك الطبية وبروتوكولات تدخل التمريض، مع تسليط الضوء على الأساليب التشخيصية وخيارات العلاج واستراتيجيات الرعاية الداعمة التي يمكن أن تساعد في التخفيف من الأعراض وتحسين نوعية حياة الأفراد المتأثرين.

الطرق: تم إجراء مراجعة شاملة للأدبيات الحالية، بما في ذلك الدراسات حول الفسيولوجيا المرضية لمرض نيومان-بيك، والعرض السريري، وأساليب التشخيص، وطرق العلاج، وبروتوكولات رعاية التمريض. تم تجميع النتائج من مصادر متعددة، بما في ذلك التجارب السريرية، ودراسات الحالة، وآراء الخبراء.

النتائج: تظل إدارة مرض نيومان-بيك بشكل رئيسي عرضية، حيث لا يوجد علاج متاح حاليًا. تركز استراتيجيات العلاج على العلاج بالإنزيمات البديلة (ERT) ، والعلاج الجيني، والرعاية الداعمة مثل العلاج الطبيعي للأعراض العصبية، والدعم التنفسي لأمراض الرئة، ونقل الدم للمضاعفات الدموية. يعد التشخيص المبكر، من خلال اختبارات الإنزيمات والاختبارات الجينية، أمرًا بالغ الأهمية لإدارة المرض المثلى. تلعب التدخلات التمريضية دورًا حيويًا في تقديم الرعاية الشاملة للمرضى، مع مراعاة احتياجاتهم البدنية والنفسية.

الخلاصة: تتطلب إدارة مرض نيومان-بيك الفعالة نهجًا متعدد التخصصات يشمل التشخيص المبكر، وإدارة الأعراض، والرعاية الداعمة المستمرة. على الرغم من أن التطورات مثل العلاج بالإنزيمات البديلة تظهر وعدًا، إلا أن الأبحاث بشأن علاجات أكثر فعالية، بما في ذلك العلاج الجيني، ما زالت جارية. يلعب الممرضون دورًا محوريًا في ضمان الرعاية الشاملة ودعم المرضى والعائلات خلال تحديات المرض.

الكلمات المفتاحية: مرض نيومان-بيك، اضطرابات تخزين الليزوزومات، العلاج بالإنزيمات البديلة، رعاية التمريض، الاختبارات الجينية، إدارة الأعراض.