
Review of Contemporary Philosophy 

ISSN: 1841-5261, e-ISSN: 2471-089X 

Vol 22 (1), 2023 
Pp   5721 - 5728 

 
 

5721 
 

https://reviewofconphil.com 

Enhancing Quality in Laboratory Medicine through Machine 

Learning: A Comprehensive Review of Pre-Analytical, 

Analytical, and Post-Analytical Phases 

1-Yahya Ahmed Ali Jaibain,2-Fatimah Husain Yahya Dabash,3-Nourah Saad Turki 

Alotaibi,4-Asma Abdulaziz Alosaimi ,5- Yara Ibrahim Alhusayni ,6-Munira Mishal 

Alotaibi,7- Atheer Khalaf Alotaibi ,8-Hessa Mohammed Alhammadi ,9- Sarah Saad 

Almansoor,10-Abdulrahman Yahya Hadi Masmali ,11-Nouf Abdulqader Hassan,12-

Miad Mahmoud Alali,13-Ahmed Gassim Ahmed Mkrshy 

1 Ksa, Ministry Of Health, Erada And Mental Health Medical Complex 
2 Ksa, Ministry Of Health, Comprehensive Specialized Polyclinic For Security Forces In Jazan 

3 Ksa, Ministry Of Health 
4 Ksa, Ministry Of Health 
5 Ksa, Ministry Of Health 
6 Ksa, Ministry Of Health 
7 Ksa, Ministry Of Health 
8 Ksa, Ministry Of Health 
9 Ksa, Ministry Of Health 

10 Ksa, Ministry Of Health, King Khalid University Hospital 
11 Ksa, Ministry Of Health, King Salman Hospital Raiyd 

12 Ksa, Ministry Of Health, Duba General Hospital 
13 Ksa, Ministry Of Health, King Fahd Central Hospital 

 

Abstract 

Background: The integration of machine learning (ML) within laboratory medicine is revolutionizing the 

quality of healthcare through improved diagnostic accuracy and operational efficiency. As laboratory 

testing is segmented into pre-analytical, analytical, and post-analytical phases, each phase presents unique 

challenges that can benefit from ML techniques. This review systematically assesses the application of ML 

in these phases to identify potential improvements in quality management and error reduction. 

Methods: A comprehensive literature search was conducted using the PubMed database for studies 

published from 2000 to 2023, employing keywords such as “machine learning,” “laboratory medicine,” 

“biomarker,” and “laboratory test.”  

Results: The findings reveal that ML algorithms significantly enhance specimen quality assurance in the 

pre-analytical phase, reduce operational costs and analytical errors during testing, and improve clinical 

decision-making in the post-analytical phase. Notably, studies indicated that ML outperformed traditional 

methods in detecting misidentification and sample quality issues, achieving accuracies exceeding 90%. 

Conclusions: In conclusion, the deployment of machine learning in laboratory medicine offers substantial 

benefits across all testing phases, enhancing diagnostic precision and patient safety. The findings 

underscore the importance of integrating ML technologies into laboratory practices to facilitate better 

health outcomes. Future research should focus on refining these algorithms and exploring their application 

in diverse laboratory settings to maximize their potential. 
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1. Introduction 

Machine learning (ML) is a subset of artificial intelligence (AI) that seeks to identify general principles 

within intricate data using predefined algorithms, and then apply these principles to novel data for 

categorization and prediction. In recent years, the rapid progress of computer software and hardware, along 

with the robust expansion of the internet, has facilitated the acquisition of extensive biomedical data 

quickly, hence enabling AI applications in contemporary medical sciences (1). A variety of AI techniques, 

exemplified by machine learning algorithms, are progressively transforming contemporary medical 

frameworks (2). 

Laboratory medicine, a crucial component of contemporary healthcare, investigates the processes of illness 

incidence and progression via laboratory testing, therefore offering a scientific foundation for risk 

assessment, diagnosis, stratification, prognosis evaluation, and therapy monitoring. The laboratory testing 

procedure is often categorized into three phases: pre-analytical, analytical, and post-analytical (3,4). The 

pre-analytical phase includes the selection of appropriate laboratory tests and the collection and delivery 

of suitable specimens, during which the impact of specimen quality on laboratory tests must be mitigated 

(5). During the analytical phase, the laboratory testing procedure must be perpetually refined to guarantee 

timely and precise results; concurrently, the expenses associated with laboratory tests should be 

consistently minimized to fulfill clinical requirements for disease diagnosis and treatment with optimal 

resource utilization. The post-analytical step necessitates a rigorous and rational assessment of the clinical 

significance of test findings to enhance patient care (6). 

In recent years, machine learning algorithms have significantly transformed the field of laboratory medicine 

(7). Numerous research has shown that machine learning algorithms may decrease laboratory expenses 

and mistakes while enhancing quality management in laboratories.  

2. Methods  

The PubMed database was queried to locate research published from 2000 to 2023 with the search phrases 

“machine learning,” “laboratory medicine,” “biomarker,” and “laboratory test.”  

3. Utilization of machine learning in the pre-analytical phase 

The objective of the pre-analytical step is to guarantee specimen quality and reduce mistakes. 

Improvements in laboratory testing methodologies have significantly reduced analytical errors, with the 

majority occurring during the pre-analytical phase, which may involve misidentification, incorrect 

container usage, inadequate volume, and clotting of anticoagulated specimens (8,9). 

Misidentification is a prevalent mistake during the pre-analytical phase. In clinical practice, 

misidentification is mostly identified by delta checks, which include comparing previous data; however, this 

method largely relies on human judgment and lacks standardized objective criteria (10). Laboratory 

workers across various facilities may possess divergent interpretations of the delta check, leading to 

significant discrepancies in the detection of misidentification across labs and personnel. Moreover, manual 

assessment is labor-intensive, which hinders the conservation of laboratory resources. Consequently, 

several research has investigated the efficacy of machine learning in identifying misidentification (11-14).  

In the majority of these studies, specific laboratory test data were initially extracted from the laboratory 

information system (LIS), followed by the application of inclusion and exclusion criteria to identify data 

suitable for analysis (e.g., patients who underwent duplicate testing within seven days). Computer software 

was used to randomly generate misidentifications in fifty percent of the specimens, and the precision in 

identifying these manufactured misidentifications was compared between machine learning methods and 

human assessments. All of this research demonstrated that machine learning algorithms exhibited much 

more accuracy than human assessments (11-14). In a study, researchers used machine learning algorithms 

to examine misidentification in electrolytes and renal function tests, finding that the accuracy of manual 
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identification was about 77.8%. Conversely, the most basic machine learning method, the decision tree, 

attained an accuracy of 86.5%, while the accuracy of the artificial neural network reached 92.1% (14).  

The accuracy of detecting misidentification may be substantially enhanced if machine learning findings are 

communicated to laboratory workers, therefore alerting them to the potential danger of misidentification 

(15). Consequently, the precision of machine learning in detecting misidentification far surpasses that of 

manual identification, and this accuracy may be enhanced further if the machine learning outcomes are 

provided to laboratory personnel for thorough evaluation. 

Hemolysis, icterus, and lipemia (HIL) in blood samples are prevalent pre-analytical mistakes that provide 

significant obstacles to laboratory testing (16,17). Traditionally, HIL is mostly assessed by visual 

examination, a process that is time-consuming and susceptible to subjective influences, resulting in 

diminished accuracy in clinical practice. Recently developed biochemical equipment may ascertain the HIL 

state of a material and characterize it using markers such as the hemolysis index (H-index), icterus index 

(I-index), and/or lipemia index (L-index) (18,19). Approximately 10 minutes are necessary for the 

biochemical instrument to assess the specimen state, which will impact the instrument's efficiency and the 

laboratory's turnaround time. New research used deep learning to examine sample photos to ascertain the 

presence of HIL. All areas under the receiver operating characteristic curve (AUCs) for deep learning in 

identifying HIL exceeded 0.98, demonstrating much superior accuracy compared to biochemical equipment 

(20). Consequently, deep learning may significantly enhance the precision in detecting low-quality blood 

samples (20). 

Besides detecting misidentification and substandard samples, machine learning may also be used to 

identify specimen clotting. In coagulation assays, the clotting of samples will influence the precision of the 

test outcomes. In practical practice, the assessment of specimen clotting mostly relies on visual 

examination, which, however, fails to detect tiny clots in some coagulated blood specimens. The potential 

for clotting may be anticipated from the outcomes of a coagulation test, since clotting may alter the test 

findings. Recent empirical research used backpropagation (BP) neural networks to assess the probability 

of clot formation in a blood sample (21). The findings indicated that the BP neural network approach using 

coagulation test data had exceptional accuracy in forecasting blood clotting, with an AUC of 0.97. 

4. Utilization of machine learning in the analytical phase 

The analysis phase encompasses the whole procedure from the arrival of a particular sample in the 

laboratory to the dissemination of the test findings. Machine learning may enhance laboratory workflows, 

decrease operational expenses, and improve efficiency. Machine learning methods fulfill distinct functions 

for various laboratory assays or test panels. This document demonstrates the applicability of machine 

learning techniques in various healthcare environments (22). 

Given that low-density lipoprotein cholesterol (LDL-C) is a significant risk factor and therapeutic objective 

for cardio-cerebrovascular disorders (CVDs), LDL-C testing is very valuable for the prevention and 

management of CVDs. The standard approach for LDL-C testing is beta measurement using 

ultracentrifugation; however, this process is time-consuming, labor-intensive, and necessitates costly 

equipment, rendering it impractical for frequent testing. Consequently, ML algorithms may provide more 

advantages in forecasting LDL-C. Numerous research has assessed the precision of machine learning 

algorithms in forecasting LDL-C, all of which used TC, TG, and HDL-C as their foundational parameters (23-

29). These investigations revealed that ML algorithms had superior accuracy compared to both 

Friedewald’s formula and the more recently suggested Martin formula (30). Machine learning methods 

demonstrate considerable accuracy in patients with both elevated and reduced LDL-C values. Significantly, 

machine learning algorithms may be seamlessly integrated into the laboratory information system and are 

user-friendly. 

The liver enzyme test is a crucial component of the liver function assessment. The standard liver enzymes 

assessed are aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase 

(AKP), and γ-glutamyl transferase (GGT). While the therapeutic significance of these enzymes is distinct, 
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there may be some degree of overlap among them. Consequently, some enzymatic assays may be 

superfluous in terms of reducing laboratory testing expenses. Research suggested that ALT and AKP values 

may serve as predictors for GGT readings (31). The researchers discovered that the ALT and AKP decision 

trees achieved an accuracy of up to 90% in predicting GGT with the use of ML techniques. In summary, GGT 

assays are unnecessary in 90% of liver function assessments, since GGT levels may be reliably inferred from 

ALT and ALP readings. One of the primary functions of machine learning in the analytical phase is to use 

inexpensive laboratory tests to forecast the need for expensive laboratory procedures. Besides GGT, ferritin 

levels may also be anticipated from standard blood test findings (32,33). 

Besides predicting laboratory findings, machine learning has been extensively used in auto-verification, 

formulating guidelines for urine sediment analysis, morphological categorization of erythrocytes, and data 

analysis in metabolomics (34). 

5. Utilization of machine learning in the post-analytical phase 

The objective of laboratory medicine in the post-analytical phase is to convert test data into actionable 

clinical information and provide scientific evidence for illness diagnosis and assessment. The function of 

machine learning in this procedure is to amalgamate the current test findings to inform the diagnosis and 

treatment of illnesses. This research used two samples to demonstrate the application of machine learning 

algorithms in evaluating the clinical significance of laboratory testing (35-37). 

The biochemistry of pleural fluid is a crucial method for identifying TB pleurisy. Adenosine deaminase 

(ADA) has a diagnosis accuracy of around 90% for this condition (38). Additional biomarkers in pleural 

fluid, such as lactate dehydrogenase (LDH) and leukocyte count, possess specific diagnostic significance for 

tuberculous pleurisy. Consequently, it is essential to ascertain if biomarkers (e.g., LDH) in pleural fluid might 

enhance the diagnostic precision of ADA. Do combinations of various biomarkers, including ADA, exhibit 

superior diagnostic performance compared to ADA alone. 2019 research using machine learning 

techniques, including support vector machine (SVM) and random forest (RF), to investigate the diagnostic 

efficacy of a combination of pleural fluid indicators for tuberculous pleurisy; the area under the curve (AUC) 

for adenosine deaminase (ADA) was 0.89, which increased to 0.97 when utilizing the RF method. 

Consequently, although ADA has significant diagnostic value for tuberculous pleural effusion (TPE), its 

diagnostic accuracy may be enhanced when used with other biomarkers via the application of machine 

learning techniques (39). 

Evaluating the prognosis of diabetic nephropathy is fundamental for formulating personalized treatment 

strategies, hence enhancing patient outcomes. Currently, several indicators and scoring systems are 

available to forecast the advancement of diabetic nephropathy, with the most prevalent being the chronic 

kidney disease categorization system established by the Kidney Disease Improving Global Outcomes 

(KDIGO). Nonetheless, the precision of this technique in forecasting the prognosis of chronic diabetic 

nephropathy is significantly inadequate. Consequently, there is an urgent want for novel prognostic 

variables for diabetic nephropathy. 2021 cohort research using the RF algorithm with various biomarkers 

(KIM-1, TNFR1, and TNFR2) to forecast the prognosis of diabetic nephropathy patients, revealed an AUC of 

0.77 for the RF algorithm compared to an AUC of 0.62 for the KDIGO grading system (40). Consequently, 

machine learning methods possess more benefits in forecasting the prognosis of diabetic nephropathy. 

Moreover, machine learning algorithms are extensively used in the screening of Down syndrome (41) and 

the detection of malignant pleural mesothelioma (42). 

6. Conclusions 

The advent of machine learning in laboratory medicine represents a significant leap forward in enhancing 

quality management across the pre-analytical, analytical, and post-analytical phases. The findings of this 

review highlight the multifaceted benefits of ML applications, particularly in addressing longstanding 

challenges such as misidentification of samples, operational inefficiencies, and the interpretation of 

complex data sets. 
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In the pre-analytical phase, machine learning algorithms have demonstrated remarkable capabilities in 

identifying potential errors before testing occurs. By utilizing advanced predictive analytics, laboratories 

can ensure higher specimen quality, which is crucial for accurate results. The ability to detect hemolysis, 

icterus, and lipemia through deep learning techniques offers a proactive approach to quality assurance, thus 

minimizing the incidence of erroneous test results and unnecessary repeat testing. 

During the analytical phase, machine learning not only streamlines laboratory workflows but also enhances 

the accuracy of various assays. The ability to predict low-density lipoprotein cholesterol (LDL-C) levels 

using ML algorithms illustrates how these technologies can serve as effective alternatives to traditional 

methods, reducing both the time and costs associated with laboratory testing. Furthermore, the application 

of ML in auto-verification processes and guideline formulation for urine sediment analysis exemplifies its 

versatility and potential to improve operational efficiency. 

In the post-analytical phase, the role of machine learning in synthesizing laboratory results into actionable 

clinical insights is invaluable. By integrating diverse biomarkers and employing sophisticated algorithms, 

laboratories can enhance diagnostic accuracy and support personalized treatment strategies. The 

demonstrated ability of ML to improve prognostic assessments in conditions such as diabetic nephropathy 

underscores its potential to transform patient management and outcomes. 

Overall, the integration of machine learning into laboratory medicine is not merely an enhancement of 

existing practices; it represents a paradigm shift towards a more data-driven, precise, and efficient 

healthcare system. As technology continues to evolve, it is imperative for laboratory professionals to 

embrace these advancements, ensuring that they remain at the forefront of medical innovation. Future 

studies should prioritize the development of standardized protocols for ML implementation, alongside 

robust training programs for laboratory personnel to fully leverage the capabilities of these transformative 

technologies. 
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 تعزيز الجودة في الطب المخبري من خلال التعلم الآلي: مراجعة شاملة للمراحل ما قبل التحليلية، التحليلية، وما بعد التحليلية 

 الملخص 

في الطب المخبري ثورة في جودة الرعاية الصحية من خلال تحسين دقة التشخيص والكفاءة التشغيلية. مع  (ML) يحُدث دمج التعلم الآلي :الخلفية

ي أن يساهم في تقسيم الفحوصات المخبرية إلى مراحل ما قبل التحليلية، التحليلية، وما بعد التحليلية، تقدم كل مرحلة تحديات فريدة يمكن للتعلم الآل

 .جعة إلى تقييم تطبيقات التعلم الآلي في هذه المراحل لتحديد التحسينات المحتملة في إدارة الجودة وتقليل الأخطاءمعالجتها. تهدف هذه المرا

، مع استخدام كلمات 2023إلى    2000للدراسات المنشورة من عام   PubMed تم إجراء بحث شامل في الأدبيات باستخدام قاعدة بيانات :الطرق 

 ."مفتاحية مثل "التعلم الآلي"، "الطب المخبري"، "المؤشرات الحيوية"، و"الفحص المخبري

 أظهرت النتائج أن خوارزميات التعلم الآلي تعزز بشكل كبير ضمان جودة العينات في المرحلة ما قبل التحليلية، وتقلل من تكاليف التشغيل  :النتائج

لتعلم الآلي  والأخطاء التحليلية أثناء الفحص، وتحسن اتخاذ القرارات السريرية في المرحلة ما بعد التحليلية. أشارت الدراسات بشكل خاص إلى تفوق ا

 .%90على الطرق التقليدية في الكشف عن أخطاء تحديد الهوية ومشكلات جودة العينات، محققاً دقة تتجاوز 

التشخيص وسلامة   :الاستنتاجات الفحص، مما يعزز دقة  المخبري فوائد كبيرة عبر جميع مراحل  التعلم الآلي في الطب  الختام، يوفر تطبيق  في 

المستقبلية    المرضى. تؤكد النتائج على أهمية دمج تقنيات التعلم الآلي في الممارسات المخبرية لتسهيل تحسين النتائج الصحية. يجب أن تركز الأبحاث

 .سين هذه الخوارزميات واستكشاف تطبيقاتها في بيئات مخبرية متنوعة لتعظيم إمكاناتهاعلى تح

 .التعلم الآلي، الطب المخبري، إدارة الجودة، دقة التشخيص، الرعاية الصحية  :الكلمات المفتاحية 

 


