

Innovative Approaches in the Treatment and Prevention of HIV/AIDS: A Comprehensive Review of Emerging Therapeutic Strategies and Their Implications for Global Health

1-Majed Mohammed Mubarak Alqahtani,² -Ghada Sulaiman Alfaleh,³-Razan Khalid Thabit,⁴-Seraj Waleed Seraj Dafa,⁵-Afaf Nasser Mohammed Hakami,⁶-Shurouq Hamzah A Arkoubi,⁷-Ziyad Abdullateef Alkhateeb,⁸-Saleh Khader Alghamdi,⁹-Batu Ali Mohammed Mahdi,¹⁰-Ali Hassan Abdullah Hakami,¹¹-Mansour Mohammed B Aldossary,¹²-Ibrahim Hassan Qasem Faqih,¹³-Omar Mohammad A Alrashedi

1. Ksa, Ministry Of Health, Aseer Health Cluster
2. Ksa, Ministry Of Health, Prince Sultan Military Medical City
3. Ksa, Ministry Of Health, King Fahad Hospital, Jeddah
4. Ksa, Ministry Of Health, Makkah Health Cluster
5. Ksa, Ministry Of Health, Jazan University Hospital
6. Ksa, Ministry Of Health, Alsalam Hospital Madinah
7. Ksa, Ministry Of Health, Omran General Hospital
8. Ksa, Ministry Of Health
9. Ksa, Ministry Of Health, Riyadh King Fahad Medical City-Cluster2
10. Ksa, Ministry Of Health, Jazan Health Cluster
11. Ksa, Ministry Of Health, King Saud Medical City
12. Ksa, Ministry Of Health, Eradah Hospital For Mental Health In Jazan
13. Ksa, Ministry Of Health, Al Dirriyah Hospital

Abstract

Background: HIV/AIDS continues to pose a significant global public health challenge, particularly in low- and middle-income countries where access to effective treatment is limited. Despite advancements in antiretroviral therapy (ART), challenges such as drug resistance, adverse effects, and the need for lifelong adherence underscore the necessity for alternative therapeutic strategies.

Methods: This review synthesizes contemporary research on innovative HIV/AIDS treatment and prevention strategies. A comprehensive literature search was conducted using databases such as PubMed, Google Scholar, and Scopus, focusing on studies published from 2015 to 2023. The review evaluates emerging therapies, including gene therapy, immunotherapy, latency-reversing agents (LRAs), and therapeutic vaccines.

Results: Findings indicate that alternative strategies show promise in enhancing HIV management. Gene therapy has demonstrated potential for targeting and eliminating HIV reservoirs. Immunotherapy, including therapeutic vaccines and broadly neutralizing antibodies, aims to boost the immune response against the virus. Additionally, LRAs may activate latent reservoirs, making the virus susceptible to treatment. These approaches could reduce reliance on ART and potentially lead to a functional cure.

Conclusion: While ART has significantly improved the quality of life for individuals living with HIV, alternative therapeutic strategies are essential for addressing the limitations of current treatments. Continued investment in research and collaboration is crucial to advance these innovative approaches and ultimately aim for an HIV cure. A holistic understanding of these emerging modalities will be vital in combating the ongoing HIV/AIDS epidemic.

Keywords: HIV/AIDS, Antiretroviral therapy, Gene therapy, Immunotherapy, Latency-reversing agents.

Introduction

HIV/AIDS is a significant hazard to global public health. HIV/AIDS remains a significant concern despite substantial progress in our understanding of the virus and the development of effective treatment protocols. This is particularly applicable in low-income and middle-income nations where access to healthcare may be limited. Antiretroviral treatment (ART), which has revolutionized patient care and significantly improved results, is crucial for the management of HIV/AIDS. Although ART has transformed HIV from a terminal condition to a tolerable chronic illness, it remains uncured. Antiretroviral therapy (ART) is not devoid of limitations, such as the emergence of drug-resistant strains, adverse effects, and barriers to access in resource-constrained settings [1]. Likewise, viral reservoirs, drug resistance, and the necessity for lifelong medication adherence are cited as compelling reasons for the urgent exploration of alternative treatment strategies. In light of these challenges, it is imperative to investigate novel therapeutic modalities that could facilitate long-term viral suppression, reduce reliance on continuous medication, and ultimately achieve a cure for HIV [2].

This study aims to examine the current frontiers of HIV/AIDS research and identify potential avenues that may lead to a cure. A comprehensive review of the literature was conducted, focusing on reputable databases like PubMed, Google Scholar, Scopus, and Web of Science, among others. The results suggest that stem cell transplantation, gene therapy, immunotherapy, latency reversal agents (LRAs), and pharmaceutical vaccines represent promising alternative therapeutic strategies. This article aims to elucidate the evolving landscape of HIV/AIDS management by synthesizing contemporary research findings and addressing the complexities associated with HIV/AIDS treatment. By acquiring a comprehensive awareness of existing challenges and opportunities, we can avoid them and adopt a more effective and sustainable strategy to address this ongoing global health crisis.

1. Methods and search strategy

The research conducted a comprehensive search of many electronic databases, including PubMed/MEDLINE, Embase, Web of Science, Scopus, Google Scholar, and Cochrane Library, to discover alternative treatments for HIV/AIDS beyond antiretroviral medication. The investigation included studies published in English-language peer-reviewed journals, excluding those that only addressed antiretroviral therapy without regard to other drugs or treatments. We evaluated the titles and abstracts of the selected papers and gathered data using a predefined form. We used publications published from 2015 to 2023.

2. HIV/AIDS

HIV impacts the immune system, especially targeting CD4 cells, which are crucial for combating infections [3,4]. The advanced phase of HIV infection, termed acquired immunodeficiency syndrome (AIDS), leads to considerable impairment of the immune system and heightened susceptibility to cancers and opportunistic infections. HIV is primarily transmitted from mother to child during parturition or lactation, via the sharing of contaminated needles, and through unprotected sexual intercourse. Furthermore, transfusions of infected blood can facilitate transmission, although contemporary screening protocols have rendered this occurrence infrequent. The manifestations of HIV vary depending on the stage of infection. Individuals may exhibit flu-like symptoms in the first phases, such as fever, fatigue, and swollen lymph nodes. However, HIV may remain asymptomatic for years. Without medication, HIV progresses to AIDS, marked by a significant immune deficiency and the onset of cancers or opportunistic infections [5].

The primary treatment for HIV is antiretroviral therapy (ART), including a combination of medications that inhibit viral replication and facilitate the restoration and normal functioning of the immune system. Antiretroviral therapy (ART) can effectively manage HIV, enabling infected individuals to lead prolonged and healthy lives, despite the absence of a cure for the virus [6,7]. Preventive measures include promoting safe sexual practices, facilitating routine HIV testing, providing sterile needles to injecting drug users, and mitigating mother-to-child transmission through interventions during pregnancy, childbirth, and breastfeeding. Although significant progress has been made in HIV/AIDS management and prevention, the

disease continues to threaten global public health, particularly in low- and middle-income countries where access to preventive and treatment services may be limited. Ongoing efforts are essential to reduce new infections, improve care accessibility, and ultimately achieve the goal of eradicating the HIV/AIDS pandemic [8,9].

3. Antiretroviral treatment (ART): limitations and challenges

Antiretroviral treatment (ART) has significantly enhanced the quality of life and longevity for millions globally, fundamentally transforming the management of HIV/AIDS. ART is efficacious; nonetheless, it presents certain disadvantages and challenges [10,11]. The identified restrictions and challenges underscore the need for ongoing research, innovation, and comprehensive medical approaches to optimize therapy outcomes and enhance the quality of life for HIV/AIDS patients. HIV/AIDS patients have obstacles such as medication resistance, adverse effects, treatment adherence, accessibility and cost, long-term consequences, viral reservoirs, and stigma. Drug-resistant strains may develop owing to rapid mutations, while adverse effects including tiredness, nausea, and metabolic issues may affect health and adherence to treatment [12,13]. Access to antiretroviral therapy (ART) is challenging, particularly in resource-limited settings. Chronic consequences such as osteoporosis, renal dysfunction, and cardiovascular diseases need thorough healthcare interventions. Eradicating viral reservoirs and tackling stigma is crucial for attaining a cure. Confronting these issues is vital for enhancing HIV testing, treatment, and sustained adherence to antiretroviral therapy [14,15].

4. Intrinsic need for alternate HIV therapeutic strategies

Alternative therapeutic approaches are urgently required, notwithstanding the significant improvement in prognosis and quality of life for those with HIV afforded by antiretroviral therapy (ART). Antiretroviral treatment (ART) effectively halts HIV replication but entails a perpetual risk of medicine resistance, adverse effects, and long-term health complications [16]. Additionally, access to ART remains limited in several areas globally due to infrastructural challenges, stigma, and financial considerations. Instead of requiring lifelong antiretroviral therapy, alternative HIV cure options seek to achieve prolonged viral remission or elimination.[17] Vaccines are intended to enhance the immune system's defense against HIV, either by preventing infection or by limiting the virus's ability to replicate in those who have already contracted it.[18] Gene therapy involves targeting HIV reservoirs or immune cells with gene-editing tools such as CRISPR-Cas9 in order to alter them and maybe make them resistant to viral replication or make it possible for the immune system to identify and destroy infected cells.[19] Immunotherapy are treatments that boost the body's defenses against HIV, include immune checkpoint inhibitors and adoptive cell transfer, in which patients receive infusions of immune cells that have been genetically modified to recognize and eradicate HIV-infected cells.[20] Furthermore, Latency-Reversing Agents (LRAs) are substances that try to revive dormant HIV reservoirs, exposing infected cells to immune-mediated clearance or rendering them apparent to the immune system.[21] Combination therapies involve combining many strategies, such as gene therapy and immunotherapy, to target various components of the HIV lifecycle and reservoirs at the same time. Immune-based treatments include the neutralization of HIV or the enhancement of immune responses against the virus by the use of antibodies or other immunological agents [22].

5. Immunotherapeutic approaches for the treatment of HIV

Despite ART's proven effectiveness in curbing viral replication in cells, its use has been hindered by toxicity, resistance, and insufficient penetration into immune-privileged regions, including the central nervous system (CNS) [23,24]. The primary limitations of antiretroviral therapy (ART) in the central nervous system (CNS) are neurotoxic consequences, variable CNS penetration, and viral evasion inside the CNS. Immunotherapy, a promising avenue in HIV treatment, aims to enhance and alter the body's immune response against HIV. Unlike the main objective of conventional ART, immunotherapy seeks to enhance the immune system's capacity to fight HIV [25]. Therapeutic vaccinations function to stimulate the immune system to recognize and eliminate HIV-infected cells. These vaccines often use DNA or viral proteins to provoke an immune response. Further study is necessary to enhance the efficacy of initial treatment trials, despite their shown potential in reducing viral load and decelerating illness progression [26].

Endogenously produced antibodies termed “broadly neutralizing antibodies” (bNAbs) has the capacity to neutralize several strains of HIV. They may be used for the treatment and prevention of HIV infections. Monoclonal antibodies derived from broadly neutralizing antibodies (bNAbs) are being developed for passive immunization to provide temporary protection against HIV [27]. Additionally, vaccines are used to stimulate the production of bNAbs. Checkpoint inhibitors function by blocking inhibitory pathways that suppress immune responses, so seeking to enhance the efficacy of the immune system. Checkpoint inhibitors are intended to assist HIV-positive individuals in restoring their immune function by targeting molecules such as PD-1 or CTLA-4. Current clinical studies are investigating the safety and efficacy of checkpoint inhibitors in HIV [28].

6. Gene therapy

Gene therapy involves modifying a patient's immune cells to enhance their ability to recognize and eliminate HIV-positive cells. The modification of immune cells' genetic coding to confer resistance to HIV infection is under investigation, using techniques such as CRISPR/Cas9. Gene therapy may potentially include the introduction of modified immune cells designed to identify and eradicate HIV-infected cells. Immune modulators regulate the immune response by enhancing activation or mitigating inflammation. Research is underway to evaluate the efficacy of agents such as interleukins, interferons, and toll-like receptor agonists in augmenting antiviral immunity in individuals with HIV. Clutton et al. [29] assert that interleukin-10 augments the generation of CD8+ T lymphocytes. These techniques aim to enhance the immune system's ability to inhibit HIV replication and prevent the transmission of the disease.

Gene therapy, with its innovative strategies for battling the virus, has the potential to fundamentally alter the management of HIV. A primary gene therapy strategy involves gene-editing immune cells, such as T cells, to produce receptors that effectively recognize and eliminate HIV-infected cells [30]. Moreover, HIV DNA inside infected cells may be directly addressed by gene-editing techniques such as CRISPR-Cas9, potentially inhibiting or obstructing the virus's replication. Gene therapy is a potential avenue in the ongoing pursuit of effective HIV treatment, despite existing challenges, including safety concerns and the need for more research. Gene therapy may ultimately provide a viable solution for the virus [31].

7. Latency reversal drugs in the treatment of HIV

A notable advancement in the continuous battle against HIV/AIDS is the use of latency reversal drugs (LRAs). The virus responsible for AIDS, HIV, has the unique ability to reside among immune cells in the body, evading detection and treatment. The clandestine phenomenon known as latency presents a considerable obstacle to identifying an effective therapy for HIV infection. Nonetheless, the concept of latency reversal offers a potential solution to this challenge [32].

Latency reversal involves activating dormant HIV-positive cells, displacing them from their concealed sites, and exposing them to the immune system's attack or antiretroviral therapy. Agents termed LRAs are designed to initiate this awakening process, effectively flushing the virus from its reservoirs and rendering it susceptible to eradication [33-36]. The understanding that current ART effectively diminishes HIV replication but does not cure the infection underpins the rationale for employing LRAs. Quiescent CD4+ T cells are enduring immune cells capable of maintaining HIV in a latent condition. The presence of latent reservoirs considerably obstructs a functional cure for HIV/AIDS, serving as a persistent source of viral resurgence if therapy ceases. By targeting and depleting latent reservoirs, LRAs provide a prospective enhancement to existing treatment strategies. Latent Reservoir Activators (LRAs) expose dormant HIV-infected cells to immune surveillance and facilitate the eradication of the virus by antiretroviral therapies [37-40]. Identifying latency-reversing agents (LRAs) that can selectively reactivate latent HIV without excessively stimulating the immune system or inducing toxicity presents a significant challenge [41-43]. Wang et al. have examined various pharmacological agents, including protein kinase C agonists, histone deacetylase inhibitors (HDACis), Toll-like receptor agonists, and bromodomain and extraterminal domain inhibitors (BETis), as potential LRAs. Each class of LRAs employs distinct tactics to disrupt the molecular mechanisms that maintain HIV latency. Transforming the potential of LRAs into clinical success has been challenging, despite notable progress in preclinical research.

Pitman et al. [45] identified barriers to LRA clinical trials, including limited effectiveness, off-target consequences, and the inability to attain sustained viral suppression without concomitant antiretroviral medication. Considerations about viral reservoirs reestablishing and the potential resurgence of the virus after the cessation of LRA therapy are significant aspects to consider. Ait-Amor et al. [46] said that the establishment of LRAs for HIV care requires a holistic approach addressing critical clinical, scientific, and practical concerns. This involves optimizing treatment protocols, identifying safer and more efficacious latency-reversing agents (LRAs), advancing our understanding of HIV latency and reservoir dynamics, and exploring combination tactics that synergize with existing antiretroviral therapies. Long-acting therapeutics has significant promise as a crucial component of future HIV therapy regimens, notwithstanding the challenges they present. Although a permanent cure for HIV/AIDS remains distant, the scientific community's commitment to discovering innovative treatments, such as latency reversal, is apparent in their efforts to tackle one of the most significant public health challenges of our day [47].

8. Therapeutic vaccinations for HIV management

Therapeutic vaccines represent a potential area of research focused on treating HIV infection and reducing the need for ongoing antiretroviral therapy (ART). The objective of these vaccinations is to contain the virus and halt disease transmission by stimulating the immune system to recognize and attack HIV-infected cells. Therapeutic HIV vaccines seek to alter the immune response in infected individuals, improving their capacity to manage the virus, reduce viral load, and postpone the spread of infection. These vaccines may target T cells, which trigger immunological responses, and antibodies, which promote the production of broadly neutralizing antibodies. Certain vaccines integrate T cell and antibody-based methodologies. Clinical studies evaluate the immunogenicity, safety, and efficacy of these vaccinations; nonetheless, maintaining viral suppression without antiretroviral medication continues to pose a difficulty [48].

Therapeutic HIV vaccines encounter obstacles stemming from the genetic variability of HIV, its immune evasion tactics, and the need for optimum design. Notwithstanding these challenges, research continues in enhancing vaccine design, identifying novel targets, and augmenting immune responses. Innovations in delivery mechanisms, including nanoparticles and viral vectors, may enhance immunization effectiveness [49].

9. Stem cell donation for the treatment of HIV

Timothy Ray Brown, referred to as the "Berlin Patient," was the inaugural individual cured of HIV following a stem cell transplant from a donor possessing the rare CCR5 delta 32 genetic mutation, which confers resistance to HIV infection. Consequently, stem cell transplantation (SCT) has garnered interest in the management of HIV. However, SCT is not broadly endorsed for HIV treatment due to its significant risks, complexity, and the scarcity of compatible donors. Finding a suitable donor with the CCR5 delta 32 mutation, like Timothy Ray Brown did, is rather rare. A minuscule fraction of the population has this mutation. It is also costly, making it difficult for many HIV-positive patients to purchase. Furthermore, stem cell transplantation engenders ethical dilemmas, particularly when using hazardous experimental methods in the presence of safer alternatives. Despite these challenges, stem cell transplantation continues to be explored as a potential therapy strategy for HIV. Research is being conducted in current studies on alternative stem cell sources, including induced pluripotent stem cells (iPSCs), and gene-editing techniques to confer HIV resistance to transplanted cells [50].

10. Summary

HIV/AIDS treatment should be addressed holistically, including both traditional and alternative ways of care. Antiretroviral therapy (ART) has significantly contributed to diminishing viral replication and improving patient outcomes; yet its limitations underscore the need for further research and evaluation of alternative strategies. The advancement of stem cell transplantation, immunotherapy, gene therapy, latency-reversing agents, and pharmaceutical vaccines offers innovative strategies for achieving sustained viral control and even a cure for HIV/AIDS. These promising strategies may address the issues of medicine

resistance, adverse effects, and access challenges associated with ART. However, it is crucial to acknowledge the obstacles and complexities associated with developing and implementing these new therapies. It is essential to address concerns such as safety, effectiveness, price, ethical considerations, and disparities in access to treatment. To properly use these novel therapeutic modalities, sustained investment in research, innovation, and collaboration will be essential. In conjunction with a commitment to addressing institutional, social, and economic barriers, scientific and technical innovations may facilitate progress toward our shared goal of eradicating the HIV/AIDS epidemic.

References

1. Obeagu EI, Alum EU, Obeagu GU. Factors associated with prevalence of HIV among youths: a review of Africa perspective. *Madonna Univ J Med Health Sci.* 2023;3:13–8.
2. Alum EU, Obeagu EI, Ugwu OPC, et al. Inclusion of nutritional counseling and mental health services in HIV/AIDS management: a paradigm shift. *Medicine (Baltimore).* 2023;102:e35673.
3. Alum EU, Ugwu OP, Obeagu EI, Okon MB. Curtailing HIV/AIDS spread: impact of religious leaders. 2023.
4. Obeagu EI, Obeagu GU, Igwe MC, Alum EU, Ugwu OP. Neutrophil-Derived Inflammation and Pregnancy Outcomes. *Newport International Journal Of Scientific And Experimental Sciences.* 2023;4(2):10-9.
5. Coque TM, Cantón R, Pérez-Cobas AE, et al. Antimicrobial resistance in the global health network: known unknowns and challenges for efficient responses in the 21st century. *Microorganisms.* 2023;11:1050.
6. Campos-Gonzalez G, Martinez-Picado J, Velasco-Hernandez T, et al. Opportunities for CAR-T cell immunotherapy in HIV cure. *Viruses.* 2023;15:789.
7. Alum EU, Ugwu OP, Obeagu EI, et al. Reducing HIV infection rate in women: a catalyst to reducing HIV infection pervasiveness in Africa. *Int J Innov Appl Res.* 2023;11:1–6.
8. Demeke HB, McCray E, Dean HD. Ending the HIV epidemic in the United States. *AJN The American Journal of Nursing.* 2020 Mar 1;120(3):21-2.
9. Rubin R. From positive to negative to positive again—the mystery of why COVID-19 rebounds in some patients who take Paxlovid. *Jama.* 2022 Jun 28;327(24):2380-2.
10. So-Armah K, Benjamin LA, Bloomfield GS, Feinstein MJ, Hsue P, Njuguna B, Freiberg MS. HIV and cardiovascular disease. *The lancet HIV.* 2020 Apr 1;7(4):e279-93.
11. Tamirat T, Woldemichael K, Tewelde T, Laelago T. Anti-retro viral therapy adverse drug reaction and associated factors among human immuno deficiency virus infected adult patients at Nigist Eleni Mohammed Memorial hospital, South Ethiopia. *African Health Sciences.* 2020 Jul 22;20(2):560-7.
12. Obeagu EI, Obeagu GU, Hauwa BA, Umar AI. Hematocrit Variations in HIV Patients Co-infected with Malaria: A Comprehensive Review. *Journal home page: http://www.journalijiar.com.;12(01).*
13. Ayon S, Jeneby F, Hamid F, Badhrus A, Abdulrahman T, Mburu G. Developing integrated community-based HIV prevention, harm reduction, and sexual and reproductive health services for women who inject drugs. *Reproductive health.* 2019 May;16:1-1.
14. Bekker L-G, Alleyne G, Baral S, et al. Advancing global health and strengthening the HIV response in the era of the sustainable development goals: the International AIDS Society – Lancet Commission. *Lancet.* 2018;392:312–58.
15. Foka FET, Mufhandu HT. Current ARTs, virologic failure, and implications for AIDS management: a systematic review. *Viruses.* 2023;15:1732.
16. Beer L, McCree DH, Jeffries IV WL, Lemons A, Sionean C. Recent US Centers for Disease Control and Prevention activities to reduce HIV stigma. *Journal of the International Association of Providers of AIDS Care (JIAPAC).* 2019 Jan 23;18:2325958218823541.
17. Dubé K, Willenberg L, Dee L, et al. Re-examining the HIV “functional cure” oxymoron: time for precise terminology? *J Virus Erad.* 2020;6:100017.
18. Sobia P, Archary D. Preventive HIV vaccines-leveraging on lessons from the past to pave the way forward. *Vaccines (Basel).* 2021;9:1001.
19. Das AT, Binda CS, Berkhout B. Elimination of infectious HIV DNA by CRISPR–Cas9. *Curr Opin Virol.* 2019;38:81–8.
20. Gupta SL, Basu S, Soni V, et al. Immunotherapy: an alternative promising therapeutic approach against cancers. *Mol Biol Rep.* 2022;49:9903–13.

21. Spivak AM, Planelles V. Novel latency reversing agents for HIV-1 cure. *Annu Rev Med*. 2018;69:421–36.
22. Wallace Z, Singh PK, Dorrell L. Combination strategies to durably suppress HIV-1: soluble T cell receptors. *J Virus Erad*. 2022;8:100082.
23. Nühn MM, Gumbs SBH, Buchholtz NVEJ, et al. Shock and kill within the CNS: a promising HIV eradication approach? *J Leukoc Biol*. 2022;112:1297–315.
24. Puronen CE, Ford ES, Uldrick TS. Immunotherapy in people with HIV and cancer. *Front Immunol*. 2019;10:2060.
25. Lurain K. Treating cancer in people with HIV. *Journal of Clinical Oncology*. 2023 Jul 20;41(21):3682–8.
26. Kumar R, Qureshi H, Deshpande S, et al. Broadly neutralizing antibodies in HIV-1 treatment and prevention. *Ther Adv Vaccines Immunother*. 2018;6:61–8.
27. Castelli V, Lombardi A, Palomba E, et al. Immune checkpoint inhibitors in people living with HIV/AIDS: facts and controversies. *Cells*. 2021;10:2227.
28. de Freitas MV, Frâncio L, Haleva L, et al. Protection is not always a good thing: the immune system's impact on gene therapy. *Genet Mol Biol*. 2022;45:e20220046.
29. Clutton G, Bridgeman A, Reyes-Sandoval A, et al. Transient IL-10 receptor blockade can enhance CD8+ T cell responses to a simian adenovirus-vectored HIV-1 conserved region immunogen. *Hum Vaccin Immunother*. 2015;11:1030–5.
30. Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. *Front Cell Infect Microbiol*. 2019;9:69.
31. Cisneros WJ, Cornish D, Hultquist JF. Application of CRISPR-Cas9 gene editing for HIV host factor discovery and validation. *Pathogens*. 2022;11:891.
32. Tarasova O, Ivanov S, Filimonov DA, Poroikov V. Data and text mining help identify key proteins involved in the molecular mechanisms shared by SARS-CoV-2 and HIV-1. *Molecules*. 2020 Jun 26;25(12):2944.
33. Maslennikova A, Mazurov D. Application of CRISPR/Cas genomic editing tools for HIV therapy: toward precise modifications and multilevel protection. *Front Cell Infect Microbiol*. 2022;12:880030.
34. Collins C, Isbell MT, Karim QA, Sohn AH, Beyrer C, Maleche A. Leveraging the HIV response to strengthen pandemic preparedness. *PLOS Global Public Health*. 2023 Jan 24;3(1):e0001511.
35. Wang CX, Cannon PM. The clinical applications of genome editing in HIV. *Blood*. 2016;127:2546–52.
36. Zhang Z, Hou W, Chen S. Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. *Virol Sin*. 2022;37:1–10.
37. Xun J, Zhang X, Guo S, Lu H, Chen J. Editing out HIV: application of gene editing technology to achieve functional cure. *Retrovirology*. 2021 Dec 18;18(1):39.
38. Khalid K, Padda J, Wijeratne Fernando R, et al. Stem cell therapy and its significance in HIV infection. *Cureus* 2021;13:e17507.
39. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. *Signal transduction and targeted therapy*. 2020 Jan 3;5(1):1.
40. Younan PM, Peterson CW, Polacino P, et al. Lentivirus-mediated gene transfer in hematopoietic stem cells is impaired in SHIV-infected, ART-treated nonhuman primates. *Mol Ther*. 2015;23:943–51.
41. Kohn DB, Chen YY, Spencer MJ. Successes and challenges in clinical gene therapy. *Gene Ther*. 2023;30:738–46.
42. Sadowski I, Hashemi FB. Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. *Cell Mol Life Sci*. 2019;76:3583–600.
43. Tanaka K, Kim Y, Roche M, et al. The role of latency reversal in HIV cure strategies. *J Med Primatol*. 2022;51:278–83.
44. Wang Y-K, Wei L, Hu W, et al. Medicinal chemistry of Anti-HIV-1 latency chemotherapeutics: biotargets, binding modes and structure-activity relationship investigation. *Molecules*. 2022;28:3.
45. Pitman MC, Lau JSY, McMahon JH, et al. Barriers and strategies to achieve a cure for HIV. *Lancet HIV*. 2018;5:e317–28.
46. Ait-Ammar A, Kula A, Darcis G, et al. Current status of latency reversing agents facing the heterogeneity of HIV-1 cellular and tissue reservoirs. *Front Microbiol*. 2020;10:1–23.

47. Ng'uni T, Chasara C, Ndhlovu ZM. Major scientific hurdles in HIV vaccine development: historical perspective and future directions. *Front Immunol.* 2020;11:590780.
48. Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. *Semin Immunol.* 2021;51:101412.
49. Gupta PK, Saxena A. HIV/AIDS: current updates on the disease, treatment and prevention. *Proc Natl Acad Sci India Sect B Biol Sci.* 2021;91:495–510.
50. Kandula UR, Wake AD. Promising stem cell therapy in the management of HIV and AIDS: a narrative review. *Biologics.* 2022;16:89–105.

أساليب مبتكرة في علاج والوقاية من فيروس نقص المناعة البشرية/الإيدز: مراجعة شاملة لاستراتيجيات العلاجية الناشئة وآثارها على الصحة العالمية

الملخص

الخلفية: لا يزال فيروس نقص المناعة البشرية/الإيدز يمثل تحديًّا كبيرًا للصحة العامة العالمية، خاصة في البلدان ذات الدخل المنخفض والمتوسط حيث الوصول إلى العلاج الفعال محدود. على الرغم من التقدم في العلاج المضاد للفيروسات القهقرية (ART)، فإن التحديات مثل مقاومة الأدوية، والآثار الجانبية، وال الحاجة إلى الالتزام مدى الحياة تتسلط الضوء على ضرورة وجود استراتيجية علاجية بديلة.

الطرق: تقوم هذه المراجعة بتلخيص الأبحاث المعاصرة حول استراتيجيات علاج والوقاية من فيروس نقص المناعة البشرية/الإيدز المبتكرة. تم إجراء بحث شامل في الأدبيات باستخدام قواعد بيانات مثل PubMed ، وجوجل سكولار، وسكونس، مع التركيز على الدراسات المنشورة من 2015 إلى 2023. تقوم المراجعة بتقييم العلاجات الناشئة، بما في ذلك العلاج الجيني، والعلاج المناعي، وعوامل عكس الكمون (LRAs) ، واللقاحات العلاجية.

النتائج: تشير النتائج إلى أن الاستراتيجيات البديلة تظهر وعدًا في تعزيز إدارة فيروس نقص المناعة البشرية. لقد أظهر العلاج الجيني إمكانية استهداف وإزالة خزانات فيروس نقص المناعة البشرية. يهدف العلاج المناعي، بما في ذلك المقاولات العلاجية والأجسام المضادة المحايدة على نطاق واسع، إلى تعزيز الاستجابة المناعية ضد الفيروس. بالإضافة إلى ذلك، قد تنشط عوامل عكس الكمون الخزانات الكامنة، مما يجعل الفيروس عرضة للعلاج. يمكن أن تقلل هذه الأساليب من الاعتماد على ART وقد تؤدي إلى علاج وظيفي.

الخاتمة: على الرغم من أن ART قد حسنت بشكل كبير من نوعية الحياة للأفراد الذين يعيشون مع فيروس نقص المناعة البشرية، فإن الاستراتيجيات العلاجية البديلة ضرورية لمعالجة قيود العلاجات الحالية. يعتبر الاستثمار المستمر في البحث والتعاون أمرًا حيوياً لتقديم هذه الأساليب المبتكرة والهدف في النهاية إلى إيجاد علاج لفيروس نقص المناعة البشرية. سيكون الفهم الشامل لهذه الأساليب الناشئة أمرًا حيوياً في مكافحة وباء فيروس نقص المناعة البشرية/الإيدز المستمر.

الكلمات المفتاحية: فيروس نقص المناعة البشرية/الإيدز، العلاج المضاد للفيروسات القهقرية، العلاج الجيني، العلاج المناعي، عوامل عكس الكمون.