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Abstract 

Background: Medical imaging is vital for diagnosing numerous health conditions, yet the increasing 

volume of imaging data presents significant challenges for radiologists. Traditional computer-aided 

diagnosis (CAD) systems have shown limited clinical implementation due to inadequate performance. The 

advent of deep learning technologies offers promising solutions to enhance imaging analysis and diagnostic 

accuracy. 

Methods: This review examines the evolution and application of deep learning techniques in medical 

imaging, particularly in CAD systems. We analyze the transition from traditional machine learning to deep 

learning, highlighting methodologies such as deep convolutional neural networks (DCNNs) that enable 

automated feature extraction from complex imaging data. A comprehensive literature search was 

conducted to assess the performance of deep learning in various imaging modalities. 

Results: The findings indicate that deep learning approaches, particularly DCNNs, significantly outperform 

traditional CAD systems by autonomously identifying and classifying pathological features in medical 

images. Studies demonstrate enhanced sensitivity and specificity in detecting malignancies, improving 

overall diagnostic accuracy. However, challenges remain regarding the integration of these technologies into 

clinical workflows, including the need for extensive training datasets and the potential for over-reliance on 

automated systems. 

Conclusion: Deep learning represents a transformative advancement in the field of medical imaging and 

CAD. While promising results have been reported, further research is necessary to address existing barriers 

to clinical adoption. Standardization of performance metrics, rigorous testing across diverse populations, 
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and comprehensive training for healthcare professionals are essential for the successful implementation of 

deep learning-based CAD systems in routine clinical practice. 

Keywords: Deep learning, medical imaging, computer-aided diagnosis, convolutional neural networks, 

diagnostic accuracy. 
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1. Introduction 

Medical imaging serves as a crucial diagnostic instrument for several disorders. In 1895, Roentgen 

found that X-rays could peer inside the human body without causing any harm. Shortly after, X-ray 

radiography emerged as the first diagnostic imaging technique. Since then, several imaging modalities have 

been created, including computed tomography, ultrasound, magnetic resonance imaging, and positron 

emission tomography, alongside more complicated imaging methods. Image information is essential for 

decision-making across several phases of patient care, including detection, characterization, staging, 

treatment response evaluation, disease recurrence monitoring, and the guidance of interventional 

treatments, and surgeries, including radiation therapy. The quantity of pictures for a certain patient case 

escalates significantly from a few two-dimensional (2D) images to hundreds with three-dimensional (3D) 

imaging and thousands with four-dimensional (4D) dynamic imaging. The use of multi-modality imaging 

increases the volume of picture data requiring interpretation. The increasing workload hampers 

radiologists and doctors in sustaining workflow efficiency while using all available imaging data to enhance 

accuracy and patient care. Recent advancements in machine learning and computational techniques have 

highlighted the necessity of creating effective and reliable computerized methods to aid radiologists and 

physicians in image analysis throughout various disease diagnosis and management stages in patient care. 

The endeavor to use computers for the automated analysis of medical photographs originated in the 

1960s [1-4]. Numerous studies have shown the viability of using computers for medical image analysis; 

nevertheless, this research has garnered little attention, perhaps due to restricted access to high-quality 

digitized image data and computing resources. Doi et al. [5] at the Kurt Rossmann Laboratory, University of 

Chicago, initiated the systematic advancement of machine learning and image analysis methodologies for 

medical imaging in the 1980s, aiming to create computer-aided diagnosis (CAD) as a supplementary 

opinion to aid radiologists in image interpretation. Chan et al. [6,7] created a CAD system for the 

identification of microcalcifications in mammograms and executed the inaugural observer performance 

research, which evidenced the efficacy of CAD in enhancing breast radiologists' detection capabilities for 

microcalcifications. The first CAD commercial system received approval from the Food and Drug 

Administration (FDA) in 1998 for use as a secondary opinion in screening mammography. Computer-aided 

design and computer-assisted image analysis have been a significant focus of study and development in 

medical imaging during the last few decades. CAD techniques have been explored for several applications, 

including disease detection, characterization, staging, treatment response evaluation, prognosis prediction, 

and risk assessment across numerous illnesses and imaging modalities. The volume of work in the CAD 

area has been consistently rising, as shown by the trend of publications in peer-reviewed journal articles 

identified by a literature search on the Web of Science. 

Despite the growing research in CAD, only a limited number of CAD systems are widely used in clinical 

settings. A primary factor might be that CAD tools created using traditional machine learning techniques 

have not achieved the high performance required to enhance both diagnosis accuracy and workflow 

efficiency for clinicians. Given the success of deep learning in numerous machine learning applications, 

including text and speech recognition, facial recognition, autonomous vehicles, and games like chess and 

Go, there are elevated expectations that deep learning will yield significant advancements in CAD 

performance and facilitate the extensive adoption of deep-learning-based CAD, or artificial intelligence (AI), 

across various tasks in patient care. This passion has catalyzed a multitude of research and publications in 

CAD using deep learning. This chapter will address many concerns and challenges associated with the 

development of deep-learning-based computer-aided detection (CAD) in medical imaging, along with 

considerations necessary for future clinical deployment of CAD. 
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2. Advanced Learning Techniques for Medical Image Evaluation and Computer-Aided Diagnosis 

Computer-aided design systems are built with machine-learning techniques. The traditional machine 

learning methodology in computer-aided diagnosis (CAD) for medical imaging used image analysis 

techniques to identify illness patterns and differentiate various structural classifications in pictures, such 

as normal vs aberrant and malignant versus benign. CAD developers create image processing and feature 

extraction methodologies informed by domain expertise to delineate visual attributes that differentiate 

diverse states. The efficacy of feature descriptors often relies on the subject knowledge of CAD developers 

and the proficiency of the mathematical formulations or empirical image analysis methods used to convert 

visual attributes into numerical values. The extracted features serve as input predictor variables for a 

classifier, and a predictive model is developed by modifying the weights of the various features according 

to the statistical characteristics of a training sample set to estimate the likelihood that an image corresponds 

to one of the states. The conventional machine learning technique is limited by the inability of human 

developers to convert intricate illness patterns into a finite set of feature descriptors, even after extensive 

exposure to many instances within the patient population. The manually developed characteristics may 

struggle to maintain robustness against the significant variability of normal and pathological patterns 

within the population. The efficacy of the established CAD system is often constrained by its discriminative 

capability or generalizability, leading to a high false positive rate at elevated sensitivity or the opposite. 

Deep learning has become the preeminent machine learning technique in several applications. Deep 

learning is a representation learning technique whereby a sophisticated multi-layer neural network 

architecture autonomously learns data representations by converting input information into various 

degrees of abstraction. Deep convolutional neural networks (DCNN) are the predominant deep learning 

architectures used for picture pattern recognition applications. Given an adequately extensive training set, 

a Deep Convolutional Neural Network (DCNN) may autonomously extract relevant features from the 

training samples for a specified task by repeatedly modifying its weights via backpropagation. DCNN hence 

identifies feature representations via training and does not need manually crafted features as input. When 

adequately trained on a substantial and representative dataset, the features extracted by DCNNs are 

anticipated to surpass those derived from hand-engineered methods because of their enhanced selectivity 

and invariance [8]. Significantly, because of the automated nature of the learning process, deep learning can 

proficiently assess hundreds or millions of examples that may elude human specialists' observation and 

retention during their careers. Deep learning may therefore exhibit more robustness to the extensive 

variances in characteristics across distinct classes, provided that the training set is sufficiently vast and 

varied for analysis. 

CNN originates from the neocognitron introduced by Fukushima et al. in the early 1980s [9]. In 1990, 

LeCun first trained a convolutional neural network (CNN) using backpropagation to categorize handwritten 

digit patterns [10]. Convolutional Neural Networks (CNN) were used in several applications, including 

object identification, character recognition, and facial recognition, throughout the early 1990s. In 1993, Lo 

et al. pioneered the use of CNNs in medical image processing and developed a CNN for detecting lung 

nodules in chest radiography [11, 12]. In the same year, Chan et al. used CNN for microcalcification 

identification on mammograms [13, 14], and then in the following year, they applied it to bulk detection 

[15-18]. Zhang et al. used a similar shift-invariant neural network for the identification of microcalcification 

clusters in 1994 [19]. Despite their limited depth, the pattern recognition efficacy of CNNs in medical 

imaging was shown. 

Deep CNNs were facilitated by several pivotal neural network training methodologies developed over 

time, including layer-wise unsupervised pre-training succeeded by supervised fine-tuning [20-22], the 

adoption of rectified linear units (ReLU) as activation functions instead of sigmoid-type functions, pooling 

to enhance feature invariance and diminish dimensionality, dropout to mitigate overfitting, and batch 

normalization, which further lessens the risk of internal covariate shift, vanishing gradients, and overfitting, 

while also accelerating training convergence [23-27]. These strategies enable the training of neural 

networks with increasing layers and millions of weights. In 2012, Krizhevsky et al. [28] introduced a 

convolutional neural network (CNN) comprising five convolutional layers and three fully connected layers, 
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termed "AlexNet," which encompassed over 60 million parameters and attained unprecedented 

performance in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [29], classifying over 1000 

categories of commonplace objects in photographic images. AlexNet illustrated the pattern recognition 

proficiency of the several levels inside a deep architecture. Deep Convolutional Neural Networks (DCNNs) 

have been built with increasing depth since the introduction of AlexNet. He et al. [30] introduced residual 

learning, demonstrating that a residual network (ResNet) with 110–152 layers could surpass many other 

deep convolutional neural networks (DCNNs) and secured victory at the ILSVRC in 2015. Sun et al. [31] 

showed that the learning potential of a DCNN augmented with depth, although this ability could only be 

effectively harnessed with enough extensive training data. 

The achievements of deep learning and artificial intelligence in personal electronics, social media, 

autonomous vehicles, chess, and the game of Go have generated extraordinary anticipation for its use in 

medicine. Deep learning has been used in several medical image processing tasks for computer-aided 

diagnosis (CAD) [32-34]. The predominant domains of CAD application with deep learning include the 

categorization of disease vs normal patterns, the differentiation between malignant and benign lesions, and 

the prognostication of high-risk and low-risk patterns for future cancer development. Additional 

applications were the segmentation and categorization of various organs and tumors, the classification of 

changes in tumor size or texture for evaluating treatment response, and the prediction of prognosis or 

recurrence. Due to the availability of substantial public datasets for chest radiographs, thoracic CT scans, 

and mammograms, several research has been undertaken on lung illnesses and breast cancer using these 

datasets [35, 36]. Deep learning-based image analysis has been used for the diagnosis of ocular illnesses in 

fundus pictures or optical coherence tomography, as well as for the categorization of cell types in 

histopathological images. The majority of research indicated very encouraging outcomes, hence enhancing 

the enthusiasm around deep-learning-based computer-aided diagnosis. This latest generation of CAD is 

termed AI, however, these CAD tools function as intricate mathematical models that retain knowledge via 

millions of weights and are far from being really "intelligent." 

3. Obstacles in Deep Learning-Driven Computer-Aided Diagnosis 

Computer-aided diagnosis (CAD) or Artificial Intelligence (AI) is anticipated to serve as valuable 

decision-support instruments in the medical field shortly. In addition to the identification and 

characterization of anomalies, applications such as pre-screening, triaging, cancer staging, treatment 

response evaluation, recurrence monitoring, and prognosis or survival prediction are under investigation. 

While no CAD systems using novel AI algorithms have undergone extensive clinical testing so far, 

information gleaned from CAD applications in screening mammography may provide expectations about 

the performance of CAD tools in clinical settings [37]. 

The traditional machine-learning-based CAD for breast cancer detection in screening mammography 

is the only CAD application now used in clinical practice. These methods demonstrate sensitivity equivalent 

to or exceeding that of radiologists, particularly with microcalcifications; nonetheless, they also provide an 

average of several false positives in each case [38]. Despite the low efficiency of CAD systems, they may 

identify lesions with features distinct from those recognized by radiologists. The synergistic detections by 

the radiologist and CAD may enhance overall sensitivity during the radiologist's interpretation with CAD 

assistance. Research indicates that the accuracy of radiologists was markedly enhanced while using CAD. 

Consequently, CAD systems received FDA approval for use as a secondary opinion, but not as a main reader 

or pre-screener. Initial therapeutic studies [39, 40] comparing single reading with CAD to double reading 

yielded encouraging outcomes. The CADET II research by Gilbert et al. [39] was a prospective randomized 

clinical trial performed at three locations in the United Kingdom. More than 28,000 patients were included. 

The screening mammography of each patient was independently evaluated in two groups: one used single 

reading with CAD, while the other employed the conventional method of double reading. The experiences 

of the single readers in the CAD group were compared to those of the first readers in the double-reading 

group.  
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Arbitration was used in recall situations involving the second reader or CAD. Arbitration was conducted 

in 1.3% of instances during a single review with CAD. The average sensitivities in the two groups were 

similar at 87.2% and 87.7%, respectively. The recall rates at the two locations were similar in both arms, 

3.7% compared to 3.6% and 2.7% compared to 2.7%, respectively; however, one site had a substantially 

elevated recall rate for single reading with CAD, 5.2% against 3.8%. The total recall rate thus rose in the 

single reading with CAD from 3.4% to 3.9%. Gromet et al. [40] conducted a retrospective analysis of 

sensitivity and recall rates from single readings with CAD after its adoption, comparing these metrics to 

those from double readings before CAD usage, using historical controls from the same cohort of nine 

radiologists at a single mammography facility. The first reading in their dual reading methodology was 

likewise examined and processed as a singular reading without CAD. The research cohort included more 

than 110,000 screening exams in each group. Arbitration by a third specialist radiologist was an element of 

their typical double-reading practice. A second radiologist was contacted for 2.1% of the patients evaluated 

by single reading with CAD, however, the consultation may or may not be associated with CAD markings. 

The sensitivity of a single reading with CAD was found to be 90.4%, surpassing the sensitivities of either 

single reading alone (81.4%) or double reading (88.0%). The memory rate for single reading with CAD was 

10.6%, somewhat above the 10.2% recall rate of single reading alone, however falling short of the 11.9% 

rate seen in double reading. These well-regulated experiments indicated that single reading with CAD may 

serve as an alternative to double reading, offering enhanced sensitivity but resulting in higher recall rates, 

which may be mitigated by arbitration similar to that used in double reading. 

Taylor et al. [41] performed a meta-analysis of clinical trials that compared single reading with 

computer-aided detection (CAD) or double reading vs single reading alone. The researchers analysed the 

cancer detection rate per 1,000 screened women (CDR) and the recall rate, thereafter calculating the 

average odds ratios weighted by sample size across the trials in each group. The findings indicated that 

multiple readings with arbitration enhanced the CDR without elevating the recall rates. The singular 

reading with CAD for the matched studies elevated the CDR, although with some fluctuation; however, in 

the absence of arbitration, the recall rate saw a substantial boost. The enhancement in recall rate for double 

reading without arbitration exceeded that of single reading with CAD by more than double. 

Taylor et al. demonstrated significant variances in the influence of CAD on the cancer detection 

rate, which ranges from 0% to 19%, and the recall rate, which spans from 0% to 37%. In addition to the 

discrepancies in research designs and the radiologists' expertise, the inconsistencies may also stem from 

the diverse use of CAD by radiologists in clinical settings. Certain users may have misconstrued the 

constraints and efficacy of the CAD technologies. They may have excessively depended on the CAD markers, 

resulting in a lack of attentiveness in lesion detection while augmenting their recall rates. Others may have 

used CAD as an initial evaluator or preliminary reader to enhance workflow efficiency. Despite the absence 

of systematic studies on the application of CAD in clinical settings, Fenton et al. [42] observed that 

“radiologists with varying levels of experience and expertise may employ CAD in a non-standardized, 

idiosyncratic manner,” and “some community radiologists, for instance, may opt not to recall women due to 

the lack of CAD indicators on otherwise suspicious lesions.” Lehman et al. [43] conducted a comparison of 

digital mammogram readings with and without CAD involving 271 radiologists across 66 facilities within 

the Breast Cancer Surveillance Consortium (BCSC). The average sensitivity decreased by 2.3%, but the 

recall rate was augmented by 4.5% with the use of CAD. The reduction in sensitivity indicated that the 

radiologists did not use CAD as a secondary opinion, necessitating users to sustain their interpretative 

attentiveness and, therefore, their sensitivity, but instead excessively depended on the CAD annotations for 

recall judgments. The authors recognized that “Previous studies have established that not all cancers are 

indicated by CAD and that cancers are frequently missed if CAD does not highlight a visible lesion” and that 

“CAD may enhance mammography efficacy when adequate training is given on its utilization to improve 

performance.” 

The research conducted by Cole et al. [38] revealed an additional aspect of using CAD. 

Observational research was performed to evaluate single readings with and without computer-aided 

detection (CAD) using two commercial CAD systems on 300 screening cases (150 malignancies and 150 
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benign or normal) from the Digital Mammographic Imaging Screening Trial (DMIST). All study readers were 

seasoned breast radiologists who have used CAD in their clinical practice. The independent sensitivity of 

both CAD systems was 25% more than that of the radiologists, regardless of CAD use, although they 

averaged over two false positive indications in each case. The findings markedly contrasted with those 

noted during the first phases of CAD research, when radiologists expressed much enthusiasm for CAD. The 

findings suggest that prolonged use of CAD by radiologists may have dulled their attention to many false 

positive markings, resulting in the dismissal of many indications, including actual positives. In a screening 

context, the duration required for a radiologist to eliminate over 2000 false positive indications to identify 

one or two tumors per 1000 tests is deemed economically unviable by several radiologists. This research 

demonstrated that the specificity of a decision support tool must be elevated to prevent clinician fatigue in 

reaction to the computer's suggestions. 

4. Transfer Learning 

Transfer learning is a prevalent strategy used by deep learning practitioners when the training dataset 

is limited. In transfer learning, a well-trained Deep Convolutional Neural Network (DCNN) from a source 

domain is converted to a new target task by fine-tuning it using a comparatively small training set from the 

target domain. DCNN functions as a feature extractor, acquiring representations of input data by extracting 

various degrees of abstraction via its convolutional layers [44-47]. Yosinski et al. [48] have shown that the 

features acquired in the shallow layers are more general, whereas those in the deeper layers become more 

tailored to the particular job for which the DCNN is being trained. Due to the decomposition of features into 

several components in a DCNN, and the prevalence of similar fundamental elements in most photos, the 

information acquired by a trained DCNN in feature extraction is demonstrably transferable across diverse 

image domains. The transferability of characteristics diminishes when the disparities between the source 

domain and the destination domain increase. Nonetheless, even for markedly distinct source and target 

tasks, transfer learning by initializing a DCNN with weights acquired from another source task may surpass 

the performance of the identical DCNN trained with randomly initialized weights for the target task. 

The bulk of work on training deep learning models in medical imaging used transfer learning because 

of the scarcity of accessible data. The biggest annotated public dataset currently accessible is ImageNet, 

which comprises photographic pictures of over 1000 categories of ordinary items, including animals, 

automobiles, plants, ships, and aircraft. The majority of DCNN models in medical imaging were developed 

using transfer learning, utilizing models that started with ImageNet-pretrained weights and then fine-tuned 

with a small dataset of medical images. Transfer learning was typically seen to enhance the training 

convergence and resilience of deep convolutional neural networks (DCNNs). In several instances, pre-

trained DCNNs were used as feature extractors without fine-tuning; the deep features obtained from 

applying the pre-trained DCNN to the picture data of the target domain served as predictor variables for 

training an external classifier for the target task. 

While transfer learning may somewhat mitigate the issue of insufficient data, a substantial training 

dataset remains essential for attaining a high-performance DCNN model for a certain target task. Samala et 

al. [49] performed research to assess the impact of training set size on the efficacy of a transfer-trained 

Deep Convolutional Neural Network (DCNN) in diagnosing malignant and benign breast masses in digital 

breast tomosynthesis (DBT). The ImageNet-pretrained AlexNet, including 5 convolutional layers and 3 fully 

connected layers, was augmented with 2 additional fully connected layers (resulting in a total of 5 fully 

connected layers) to condense the classification from over 1000 categories to 2 (malignant and benign) and 

then transfer-trained for the target task. Due to the limited size of the DBT dataset and the relative 

abundance of mammogram data, the pre-trained AlexNet underwent transfer training in the initial phase 

for the classification of masses in mammograms, thereby transitioning from an unrelated classification task 

on non-medical ImageNet data to a task (mammography) more closely aligned with the target task (DBT).  

5. Synopsis 

Deep learning is anticipated to transform CAD and image analysis in the medical field. Despite the use 

of machine learning in CAD and medical image analysis for over thirty years, CAD has not been widely 
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implemented in clinical settings owing to the inadequate performance of traditional machine learning 

methods. The recent triumph of deep learning technology stimulates fresh initiatives to create CAD or AI 

solutions for various applications in healthcare. A multitude of research has shown encouraging outcomes. 

Despite the elevated expectations about the precision and efficacy that AI may contribute to medicine, 

several hurdles need to be addressed to incorporate the latest generation of CAD technologies into clinical 

practice and to mitigate the danger of inadvertent injury to patients. This chapter's subject extends beyond 

computer-aided lesion identification. Comparable issues apply to all CAD technologies broadly, including 

those used for disease definition, staging, treatment planning, surgical guiding, treatment response 

evaluation, recurrence monitoring, and prognosis or survival prediction.  

Extensive databases must be amassed to furnish adequate training and validation samples for the 

development of robust deep learning models, alongside independent testing utilizing both internal and 

external multi-institutional data to evaluate generalizability. Performance standards, acceptance testing, 

and quality assurance protocols should be instituted for each application type to guarantee that the deep 

learning model's performance aligns with local clinical requirements and remains consistent over time. 

Comprehensive user training concerning the local patient population is essential to enable users to 

comprehend the capabilities and limitations of the CAD tool, establish realistic expectations, and prevent 

misuse or disillusionment. Additionally, CAD recommendations must be interpretable to empower 

clinicians in making informed decisions. Workflow efficiency and costs are essential issues in healthcare. A 

decision support tool will be deemed unacceptable if it necessitates more time and/or expenses without 

substantial therapeutic advantages. CAD researchers and developers must comprehend clinicians' 

preferred help modes for various clinical activities to build successful CAD tools and provide interpretable 

outputs while addressing practical challenges in clinical environments. When adequately created, 

evaluated, and deployed, efficient data analytics from CAD or AI technologies are anticipated to enhance 

doctors' human intelligence, hence improving accuracy, efficiency, and patient care. 
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 دور التعلم العميق في تعزيز التشخيص بمساعدة الكمبيوتر في التصوير الطبي: مراجعة شاملة 

 الملخص 

ء  يعد التصوير الطبي أمرًا حيوياً لتشخيص العديد من الحالات الصحية، ولكن الحجم المتزايد من بيانات التصوير يمثل تحديات كبيرة لأطبا  :الخلفية

تنفيذاً سريرياً محدوداً بسبب أداء غير كافٍ. توفر تقنيات التعلم العميق   (CAD) الأشعة. لقد أظهرت أنظمة التشخيص بمساعدة الكمبيوتر التقليدية

 .حلولاً واعدة لتعزيز تحليل الصور ودقة التشخيص

نقوم بتحليل الانتقال من التعلم   .CAD تستعرض هذه المراجعة تطور وتطبيق تقنيات التعلم العميق في التصوير الطبي، وخاصة في أنظمة  :الطرق 

العميقة التلافيفية  العصبية  الشبكات  العميق، مع تسليط الضوء على منهجيات مثل  التعلم  إلى  التقليدي  التي تمكن من استخراج  (DCNNs) الآلي 

 .الميزات تلقائياً من بيانات التصوير المعقدة. تم تنفيذ بحث شامل في الأدبيات لتقييم أداء التعلم العميق في مختلف أشكال التصوير

التقليدية من خلال التعرف   CAD ، تتفوق بشكل كبير على أنظمةDCNNs تشير النتائج إلى أن الأساليب القائمة على التعلم العميق، خاصةً  :النتائج

  بشكل مستقل على الميزات المرضية وتصنيفها في الصور الطبية. تظهر الدراسات تحسيناً في الحساسية والنوعية عند الكشف عن الأورام، مما 
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جموعات يحسن دقة التشخيص بشكل عام. ومع ذلك، لا تزال هناك تحديات تتعلق بدمج هذه التقنيات في سير العمل السريري، بما في ذلك الحاجة إلى م

 بيانات تدريب واسعة وإمكانية الاعتماد المفرط على الأنظمة الآلية 

فإن مزيداً من البحث  على الرغم من النتائج الواعدة التي تم الإبلاغ عنها،   .CADيمثل التعلم العميق تقدمًا تحولياً في مجال التصوير الطبي و :الخاتمة

وتوفير   ضروري لمعالجة العوائق الحالية أمام الاعتماد السريري. إن توحيد مقاييس الأداء، وإجراء اختبارات دقيقة عبر مجموعات سكانية متنوعة، 

وتر المعتمدة على التعلم العميق  التدريب الشامل للعاملين في الرعاية الصحية أمر ضروري من أجل التنفيذ الناجح لأنظمة التشخيص بمساعدة الكمبي

 .في الممارسة السريرية الروتينية 

 .التعلم العميق، التصوير الطبي، التشخيص بمساعدة الكمبيوتر، الشبكات العصبية التلافيفية، دقة التشخيص :الكلمات المفتاحية 

 


