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Abstract 

Background: Organ transplantation is a critical medical intervention for individuals with end-stage organ 

failure, yet the disparity between the demand for and supply of donor organs remains a significant 

challenge. Traditional diagnostic methods in transplant pathology often suffer from variability and 

subjectivity, which can lead to suboptimal patient outcomes. Recent advancements in artificial intelligence 

(AI) offer promising solutions to enhance diagnostic precision and efficiency. 

Methods: This review examines peer-reviewed literature from databases such as Web of Science and 

PubMed, focusing on the application of deep learning-based AI techniques in transplant pathology up until 

June 2023. We analyze AI's impact on various transplant organs, including heart, lung, kidney, and liver, 

emphasizing its role in diagnosing transplant-related diseases and improving organ allocation processes. 

Results: The integration of AI in transplant pathology has demonstrated significant improvements in 

diagnostic accuracy. For instance, AI models have achieved a high area under the curve (AUC) values in 

detecting cardiac allograft rejection and differentiating between rejection grades in kidney biopsies. 

Furthermore, AI-enhanced digital pathology tools have shown the potential to reduce inter-reader 

variability among pathologists and facilitate remote consultations. 

Conclusion: The incorporation of AI into transplant pathology represents a transformative advancement 

in the field, promising to enhance diagnostic processes, optimize immunosuppressive therapy, and 

ultimately improve patient outcomes. However, challenges such as dataset variability and the need for 

multi-institutional validation remain. Continued research and development of robust AI models are 

essential for realizing their full potential in clinical practice. 
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1. Introduction 

The Centers for Disease Control and Prevention (CDC) identifies the liver, kidneys, lungs, pancreas, 

intestines, and heart as the most frequently transplanted organs in the USA. Despite about 100,000 

individuals awaiting organ transplants daily, the availability of organs remains constrained. Approximately 

14,000 dead organ donors are available, each contributing an average of 3.5 organs, but live donors provide 

just 6,000 organs annually. In the standard of care for organ transplantation, both donors and recipients 

receive a pre-transplant evaluation of histocompatibility, pathology, and clinical history. Upon identifying a 

matched couple, the organ transplantation will commence and thereafter undergo monitoring. Post-

transplant monitoring includes the study of electronic medical records (EMR), evaluation of blood and 

bodily fluids for organ function, and the development of donor-specific antibodies, as well as routine 

biopsies in cases of suspected rejection [1]. 

Recent breakthroughs in deep learning-based artificial intelligence have transformed digital pathology 

by facilitating the creation of AI-enhanced diagnostic models for the analysis of digitized glass slides of 

biopsy specimens. AI-enhanced digital pathology can significantly aid transplant pathology by diminishing 

inter-reader variability among pathologists, facilitating teleconsultation for pre-and post-transplant 

evaluations, offering second opinions, and assessing various morphological parameters along with their 

spatial relationships. Numerous AI models have been created over the years to evaluate transplant-

associated diseases of the heart, lung, kidney, and liver [2-5]. Transplant pathology is a specific domain 

where AI-enhanced digital pathology tools may assist pathologists in improving decision-making and 

minimizing diagnostic variability. Besides advancements in transplant pathology, AI has been used in organ 

allocation and donor-recipient matching, transplant oncology, and immunosuppressive treatment [6-11]. 

Despite the remarkable achievements of AI models in synthesizing information from diverse data 

sources (such as histopathological reports, laboratory test results, radiological characteristics, and patient 

demographics), this review concentrates on the AI-enhanced analysis of whole-slide images (WSIs), which 

is fundamental to diagnosis and prognosis in transplant pathology. This study aims to elucidate the 

improvements of AI in the diagnosis and prognosis of transplant-associated heart, lung, liver, and kidney 

diseases. Additionally, we provide insights on the future direction of AI-assisted methodologies in 

transplant pathology. Figure 1 illustrates a flowchart of AI-assisted transplant pathology. A web-based 

paradigm for transplant pathology is proposed in Akkus et al. [12] 

Figure 1. A representation of an AI-enhanced kidney transplant pathology process. 
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2. Methods 

We conducted a comprehensive review of the literature using the Web of Science and PubMed 

databases. We included peer-reviewed journal articles and conference proceedings concerning the use of 

deep learning-based artificial intelligence to transplant pathology prior to June 2023. 

3. Advancements in Artificial Intelligence in Transplant Heart Pathology 

Cardiac allograft rejection is a significant issue in heart transplantation, partly because of the restricted 

supply of donor organs. While endomyocardial biopsy with histopathology grading is the standard 

procedure for diagnosing cardiac allograft rejection, significant inter- and intra-observer variability among 

pathologists can lead to inappropriate administration of immunosuppressive medications, unnecessary 

follow-up biopsies, and compromised transplant outcomes [12]. 

To far, four research have examined the use of artificial intelligence in evaluating cardiac transplant 

rejection and predicting survival. Giuste et al. [13] investigated synthetic picture synthesis to enhance the 

risk assessment of infrequent pediatric heart transplant rejection. They used advanced and motivational 

Generative Adversarial Networks (GANs) to produce high-resolution synthetic pictures with rejection 

indicators, which enhanced the efficacy of their allograft rejection classifier model. Notwithstanding their 

constrained dataset of merely 12 non-rejection and 12 rejection slides, their methodology markedly 

enhanced the efficacy of their allograft rejection classifier model, attaining an area under the receiver 

operating curve (AUC) of 98.84% for image tile-based rejection detection and 95.56% for biopsy rejection 

prediction at the whole slide image (WSI) level.  

Peyster et al. [2] introduced an automated whole slide imaging analysis pipeline using handcrafted 

feature extraction and selection for the histological grading of cardiac transplant rejection. Their research 

group included 2,472 biopsy slides from three prominent US transplant hospitals. Their model's 

performance was analogous to the agreement among pathologists (65.9% vs 60.7%). This work, although 

not fulfilling our inclusion requirements, is referenced for comparison with deep learning-based AI models. 

A weakness of this research is that the ground truth diagnostic label was derived from the computerized 

grading of a single tissue segment, while pathologists evaluate many slide sections microscopically to get a 

consensus final grade. Subsequently, Lipkova et al. [14] released a work using deep learning to evaluate 

cardiac transplant rejection from whole slide images of endomyocardial biopsies. Their model exhibited 

allograft rejection with a remarkable AUC of 0.962, representing a substantial improvement over the 

research conducted by Peyster et al. [2], which used manually constructed features and a traditional 

machine-learning methodology.  

The AUC for distinguishing between low and high-grade rejection was reported as 0.83. They used a 

pre-trained CNN model to extract features from picture patches inside their pipeline, subsequently fine-

tuning three fully connected layers, while a distinct classifier was developed to assess the rejection grade. 

The model was trained on 80% of 1690 internal WSI image datasets and verified using two external 

datasets: 1717 WSI slides from 585 patients in Turkey and 123 WSI slides from 123 patients in Switzerland. 

Finally, Glass et al. [15] optimized a pre-trained VGG model to forecast myocyte injury in acute cellular 

rejection (ACR) of cardiac transplants. The authors annotated 19,617 areas, including 10,855 regions of 

ACR, 5,002 of healing damage, and 3,760 of normal tissue from 200 H&E slides, and reported a validation 

accuracy of 94%.  

4. Advancements in Artificial Intelligence in Lung Transplant Pathology 

Notwithstanding advancements in immunosuppressive therapies and pharmacological agents, one-

third of lung transplant recipients encounter at least one instance of treated acute rejection within the first 

year post-transplantation, as reported by the International Society of Heart and Lung Transplantation 

registry [16-20]. Conversely, statistics from the Organ Procurement and Transplantation 

Network/Scientific Registry of Transplant Recipients reveal a reduced incidence of under one-fifth in the 

first year [21]. Gholamzadeh et al. [22] conducted a comprehensive systematic study of conventional 

machine-learning approaches aimed at enhancing lung transplantation results and mitigating 
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complications. We concentrated only on research of deep learning-based AI in our evaluation and directed 

readers to their publications for more information.  

Davis et al. [3] conducted significant research on the detection of acute cellular rejection (ACR) in lung 

transplant biopsies with artificial intelligence. Board-certified lung transplant pathologists provided 3349 

annotations, including 2580 patches of normal tissue and 769 lesions indicative of A1/A2 rejection. The 

training set included 614 A1/A2 lesions and 2064 areas of normal tissue. The validation set included 155 

A1/A2 lesions and 156 normal areas to assess the efficacy of their AI model. Their AI model successfully 

differentiated the vascular component of ACR from normal alveolated lung tissue with a validation accuracy 

of 95%. During our investigation, we discovered a singular work concerning lung transplant pathology 

using AI and another study addressing donor-recipient matching with AI [23]. Davis et al. [3] reported 

encouraging findings in the identification of ACR, associated with chronic lung allograft rejection, in lung 

transplant recipients. The primary constraint of their study is the absence of multi-institutional validation 

testing. 

5. Advancements in Artificial Intelligence in Renal Transplant Pathology 

Kidney transplantation is the most often performed solid organ transplant globally. As reported by the 

United Network of Organ Sharing (UNOS), over 25,000 kidney transplants were conducted in the USA in 

2022, representing a 3.4% increase compared to 2021 [24]. Despite the increasing demand for kidney 

transplantation, the pathology sector is seeing a reduction in the available manpower. According to the 

Organ Procurement and Transplantation Network (OPTN), there are 88,629 individuals in the United States 

awaiting a kidney transplant as of July 23, 2023 [25]. According to transplants performed from 2008 to 

2015, the five-year post-transplant survival rates for men and females are 85.85% and 88.2%, respectively 

[26]. Despite its novelty in this domain, the use of AI might be advantageous in several aspects, including 

enhancing the matching process between donors and patients, evaluating the histology of kidney biopsies, 

and directing the treatment and care of transplant recipients. The predominant kidney biopsy grading 

methods are Remuzzi, Banff, Leuven, and the Maryland Aggregate Pathology Index (MAPI) [27-34]. 

Hermsen et al. [31] used a UNet architectural CNN model for the multiclass segmentation of digitized 

kidney biopsy tissue sections stained with periodic acid-Schiff (PAS). The model underwent training on 40 

whole slide images (WSIs) and was verified using 10 WSIs from its home institution and 10 WSIs from an 

external university. In a separate investigation, Hermsen et al. [32] trained a UNet model to evaluate 

inflammatory and chronic characteristics in kidney transplant samples. Kers et al. [33] examined the 

efficacy of several CNN topologies in predicting transplant rejection. The research used retrospective 

multicenter data, including 5844 digital whole-slide pictures of kidney transplant biopsies collected from 

1948 individuals. A three-fold cross-validation method was used, and an external dataset including 101 

whole slide images was deployed for assessment. This research is limited by its focus on Western European 

institutions, the absence of ethnicity data owing to legal constraints, the lack of specific baseline features, 

and limited staining variability.  

Smith et al. [4] used a binary thresholding technique and trained a UNet model for glomeruli 

segmentation to evaluate interstitial inflammation from CD45-stained digital slides. The research included 

60 samples from 53 individuals and identified a robust association between the automated inflammatory 

grading and the Banff scoring system. The drawbacks of this work include an emphasis on pixel counting 

instead of cell counting, possible intricacies in the use of a deep learning methodology, and a retrospective 

design that offers low statistical power [35-37]. Wilbur et al. [38] trained an adapted version of the AlexNet 

CNN network to detect glomeruli in renal biopsies using four stains (H&E, trichrome, silver, and PAS) from 

various institutions. The research included 71 biopsies, divided into training/validation (n = 52) and testing 

(n = 19) groups. The authors underscored the significance of varied datasets for creating generalizable AI 

models. The model's sensitivity varied from 90% to 93% for the intra-institutional dataset, compared to 

77% for the inter-institutional dataset. Moreover, several review articles addressing AI in kidney 

transplantation and the evaluation of renal transplant prognosis by traditional machine learning 

methodologies are accessible for interested readers in the supplementary resources [27,39-43]. 
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6. Advancements in Artificial Intelligence in Liver Transplant Pathology 

Similar to other organ transplants, Liver Transplantation (LT) is an essential intervention for 

individuals with end-stage liver disease. Recent breakthroughs in surgical methods, greater administration 

of immunosuppressive medications, and a deeper knowledge of post-transplant morbidities have resulted 

in a substantial rise in liver transplantation surgeries. The increase in demand has therefore caused a 

shortage of organ donors, leading to a significant waiting list for liver transplant candidates [44]. Despite 

the imbalance between organ supply and demand, more than one-third of donor livers are rejected owing 

to the potential for early allograft dysfunction (EAD), as shown by histopathologic abnormalities [45]. The 

management of LT is intricate, and the existing methodologies are inadequate for clinical decision-making. 

A data-driven LT may be beneficial in both pre- and post-LT contexts [46-48]. This study domain is relatively 

new; however, several investigations have already been undertaken. Narayan et al. [49] conducted a study 

on the use of AI in forecasting donor liver allograft steatosis and early post-transplantation graft failure. 

They created a Computer Vision AI platform (CVAI) to evaluate donor liver steatosis and assessed its 

predictive power for early allograft dysfunction (EAD) in comparison to pathologist steatosis scores. The 

research included liver biopsy slide data from 2014 to 2019, including 25,494 pictures derived from 90 

liver biopsies. The findings revealed that the CVAI platform had marginally superior calibration scores 

compared to pathologist steatosis scores. Their research was primarily constrained by a restricted sample 

of donor liver from a single institution and the existence of selection bias in the assessment of relation with 

EAD.  

Yu et al. [50] developed a Multiple Up-sampling and Spatial Attention guided UNet model (MUSA-UNet) 

to delineate hepatic portal tract areas in liver whole slide images (WSI) that are associated with the stage 

of liver fibrosis. The dataset included 53 whole slide images (WSIs), with 30 allocated for training and 23 

for testing. Their model MUSA-UNet achieved an average precision of 0.94, recall of 0.85, F1 score of 0.89, 

accuracy of 0.89, and Jaccard Index of 0.80. The primary drawback of their work is the need for a more 

heterogeneous training dataset that includes stain variations and annotations from several pathologists 

across various institutions. 

Lu et al. [5] introduced an enhanced deep learning classifier (MobileNetV2_HCC_class) capable of 

predicting the recurrence of hepatocellular carcinoma (HCC) after liver transplantation. Their research 

included 1,118 patients, with 642 allocated for training, 144 for testing, and 302 for validation. The hazard 

ratio derived from the classifier in the LT set was 3.44 (95% CI 2.01–5.87, p < 0.001) and 2.55 (95% CI 1.64–

3.99, p < 0.001) after adjusting for known prognostic variables. 

Sun et al. [51] created a deep learning model based on the pre-trained VGG16 architecture [20] to 

quantify the percentage of steatosis in frozen sections of donor liver biopsies. Their approach produced a 

probability map correlating an input WSI with the resultant percentage of steatosis. Their study dataset 

consisted of 96 whole slide images (WSIs), with 30 slides designated for training and 66 for testing. In the 

testing phase, their AI model exhibited a significant correlation coefficient (r) of 0.85 and an intraclass 

correlation coefficient (ICC) of 0.85, both above the performance of the on-service pathologist (r = 0.74 and 

ICC = 0.72).  

7. Discussion 

This paper delineates the recent achievements in AI-assisted transplant pathology, particularly 

emphasizing the use of whole slide imaging (WSI). As we enter the new age of digital pathology with the 

promised capabilities of AI technology, there exists a substantial chance to transform several facets of solid 

organ transplantation. These developments have the potential to improve organ procurement procedures, 

optimize the adaptive management of immunosuppressive medications, and promote graft and patient 

survival via efficient post-transplant monitoring. Significantly, several deep learning-based AI applications 

have arisen, addressing distinct transplant organs for the accurate evaluation of histopathology in tissue 

samples. Most of these suggested AI models have been trained mostly on limited datasets and need external 

validation. To guarantee strong and accurate results, it is essential to possess well-trained and well-verified 

AI models that evaluate the histology of transplant organ samples. Such AI models will provide the field 
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with vital insights into the decision-making process about organ rejection or acceptance, perhaps forecast 

adverse outcomes, and drastically diminish postoperative problems. This advancement aims to improve 

patient care and outcomes in solid organ transplantation, hence advancing transplant pathology 

significantly. 

The histological assessment of organ biopsies is vital in determining the acceptance or rejection of dead 

donor organs for transplantation and in post-transplant surveillance when rejection is suspected. The 

primary concern in the existing practice of pre-transplant histopathology evaluation is insufficient 

concordance across pathologists [52]. The significant diversity and subjectivity among pathologists present 

a major challenge in biopsy grading, resulting in poor organ use. The diversity in pre-transplant biopsies is 

due to the quick embedding and fixation techniques used for analysis, leading to frozen artifacts and 

producing worse quality slides. In contrast, permanent slides with more intricate preparations are used for 

post-transplant biopsy assessments. Although histopathological evaluation of transplant organ samples 

requires specific training and professional consultation, pre-transplant biopsies are sometimes assessed by 

on-call general pathologists. We assert that the integration of digital pathology and the use of AI and 

informatics technologies might mitigate the significant diversity and subjectivity among pathologists, 

provide a secondary virtual expert opinion, and enhance clinical workflow efficiency. Adopting these 

innovations may establish a new epoch in solid organ transplantation, enhancing diagnostic precision and 

assisting patients requiring life-saving procedures. 

The acquisition of transplant organs mostly depends on contributions from dead or non-related 

persons. Consequently, immunosuppressive medications are given to patients to enhance long-term 

tolerance to transplanted organs and avert rejections. Monitoring substantial histopathologic alterations in 

allografts over time is crucial for evaluating transplant rejection and optimizing immunosuppressive 

protocols to enhance transplant patient outcomes. The incorporation of AI-enhanced digital pathology and 

EMR data is beneficial, as it facilitates informed decision-making for customizing customized 

immunosuppressive treatment protocols, thereby improving the care of transplant patients. 

Recent advancements have led to the availability of high-throughput digital pathology slide scanners, 

which are being integrated into clinical processes. Simultaneously, advancements in computer technology, 

cloud resources, artificial intelligence techniques, data storage, and network speed have enabled the more 

efficient processing of extensive volumes of WSI data. Furthermore, the accessibility of portable single-slide 

scanners facilitates fast onsite assessment of pathology slides, which may be advantageous in organ 

procurement situations. In pathology departments, digital pathology, automated image analysis of whole 

slide images (WSI) using artificial intelligence, and web/cloud-based applications have arisen, facilitating 

immediate access to and sharing of WSI and diagnostic findings. These tools provide prompt access to 

second viewpoints. The use of AI-assisted digital pathology processes has significant promise for enhancing 

patient outcomes and maximizing organ usage in transplant pathology. Digital procedures, meanwhile, 

present issues because to their expensive nature. Moreover, guaranteeing the repeatability and 

generalizability of AI models necessitates the creation of datasets from many organizations and scanners. 

Moreover, integrating current AI technologies into healthcare operations at scale while preserving 

efficiency poses significant challenges. Addressing these problems and integrating AI-assisted digital 

pathology into transplant pathology will be crucial for improving patient care and organ preservation. 

8. Conclusions 

AI-enhanced digital pathology has shown potential in improving the histopathological assessment of 

organ samples, with the capacity to reduce variability and subjectivity among pathologists. Although the 

use of AI in solid organ transplantation is still in its infancy, researchers are actively investigating its 

comprehensive potential. It is essential to recognize that certain constraints, as previously mentioned, need 

thorough examination and resolution prior to the extensive deployment of these AI technologies in clinical 

processes. From a global perspective, cross-border organ transplantation entails considerable complexities 

arising from various intricate challenges, including the illicit trafficking of human organs, disparities in legal 

and regulatory frameworks, cultural and ethical divergences, financial and insurance issues, and travel and 
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visa restrictions. All these criteria must be meticulously considered to guarantee the safety, efficacy, and 

ethical integrity of the operations. 
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 الأعضاء: مراجعة التطورات في زراعة الأعضاء ودور الذكاء الاصطناعي في تعزيز علم الأمراض المرتبطة بزراعة  

 الملخص 

رض  تعتبر زراعة الأعضاء تدخلاً طبياً حيوياً للأفراد الذين يعانون من فشل الأعضاء في المرحلة النهائية، إلا أن الفجوة بين الطلب والع :الخلفية

بزراعة الأعضاء من ال المرتبطة  التقليدية في علم الأمراض  التشخيص  ما تعاني طرق  كبيرًا. غالباً  تحدياً  بها تظل  المتبرع  ين  تباعلى الأعضاء 

حلولًا واعدة لتعزيز دقة   (AI) للمرضى. توفر التقدمات الأخيرة في الذكاء الاصطناعي suboptimal والموضوعية، مما يمكن أن يؤدي إلى نتائج

 .وكفاءة التشخيص

، مع التركيز على  PubMedو  Web of Science تفحص هذه المراجعة الأدبيات التي خضعت لمراجعة الأقران من قواعد بيانات مثل  :الطرق 

. نقوم بتحليل تأثير 2023تطبيق تقنيات الذكاء الاصطناعي القائمة على التعلم العميق في علم الأمراض المرتبطة بزراعة الأعضاء حتى يونيو  

في تشخيص الأمراض   الذكاء الاصطناعي على الأعضاء المزروعة المختلفة، بما في ذلك القلب والرئة والكلى والكبد، مع تسليط الضوء على دوره

 .المتعلقة بزراعة الأعضاء وتحسين عمليات تخصيص الأعضاء

أثبت دمج الذكاء الاصطناعي في علم الأمراض المرتبطة بزراعة الأعضاء تحسينات كبيرة في دقة التشخيص. على سبيل المثال، حققت   :النتائج

في اكتشاف رفض زراعة القلب وتمييز درجات الرفض في خزعات الكلى. علاوة  (AUC) نماذج الذكاء الاصطناعي قيم عالية لمنطقة تحت المنحنى

بين علماء الأمراض وتس القراء  بين  التباين  تقليل  القدرة على  بالذكاء الاصطناعي  المعزّزة  الرقمية  أدوات علم الأمراض  هيل  على ذلك، أظهرت 

 .الاستشارات عن بعُد

عمليات   :الخاتمة بتحسين  يعد  حيث  المجال،  هذا  في  تحويلياً  تقدمًا  الأعضاء  بزراعة  المرتبطة  الأمراض  علم  في  الاصطناعي  الذكاء  دمج  يمثل 

ت،  التشخيص، وتحسين العلاج المثبط للمناعة، وفي النهاية تحسين نتائج المرضى. ومع ذلك، لا تزال هناك تحديات مثل تباين مجموعات البيانا 

في  ى التحقق المتعدد المؤسسات. يعد البحث والتطوير المستمر لنماذج الذكاء الاصطناعي القوية أمرًا ضرورياً لتحقيق إمكانياتها الكاملة  والحاجة إل

 .الممارسة السريرية

 .زراعة الأعضاء، الذكاء الاصطناعي، علم الأمراض المرتبطة بزراعة الأعضاء، دقة التشخيص، العلاج المثبط للمناعة :الكلمات المفتاحية 

 


