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Abstract 

Background: Artificial intelligence (AI), particularly through deep learning techniques, is transforming 

musculoskeletal radiology. The integration of convolutional neural networks (CNNs) enhances the 

detection and classification of musculoskeletal conditions, addressing the rising demands of radiologists. 

Methods: This review synthesizes the current literature on the applications of deep learning in 

musculoskeletal imaging. A narrative approach was employed, analyzing data from the PubMed database 

using general and specific search terms related to deep learning in radiology. Key clinical studies were 

selected based on their relevance to everyday practice. 

Results: Recent advancements demonstrate that deep learning algorithms can accurately identify fractures, 

cartilage lesions, and ligament injuries, often achieving performance levels comparable to expert 

radiologists. Notably, CNNs have reached high diagnostic accuracy in detecting upper and lower extremity 

fractures, with some models outperforming human specialists. The review highlights automated 

assessments of osteoarthritis, spinal stenosis, and skeletal maturity, showcasing the potential for AI to 

streamline workflow and improve diagnostic accuracy. 

Conclusion: The rise of deep learning in musculoskeletal radiology presents significant opportunities for 

enhancing diagnostic processes. While many algorithms exhibit expert-level performance, the need for 

thorough interpretation of imaging studies remains. As AI technology evolves, it is poised to play a critical 

role in the future of musculoskeletal radiology, potentially reshaping clinical practices. 
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1. Introduction 

The most recent and significant technical improvement in radiology is the emergence of deep learning using 

convolutional neural networks (CNN), a swiftly evolving branch of artificial intelligence particularly adept 

at addressing image-related challenges [1-3]. The response of radiologists to this potentially revolutionary 

technology is evolving, including a spectrum of emotions including skepticism, curiosity, anxiety, and hope 

as the potential advantages and drawbacks become apparent [4]. Numerous recent advancements in deep 

learning pertain directly to musculoskeletal radiology, making it essential for musculoskeletal radiologists 

to comprehend the current landscape of deep learning research that could imminently influence their 

practice. 

The clinical and non-clinical responsibilities of radiologists across all subspecialties are escalating, 

including heightened imaging volumes and complexity, quality and value incentives, as well as 

administrative, educational, and research commitments [5]. Optimists may perceive the potential of deep 

learning as a means to enhance a musculoskeletal radiologist's capacity to provide efficient, high-quality 

care in a high-volume clinical setting, enabling the radiologist to concentrate on more intellectually 

challenging tasks by delegating routine functions. Conversely, legitimate concerns have been expressed 

about the possible effects of deep learning on the radiology profession across all subspecialties [6]. This 

review aims to accomplish three objectives: to succinctly elucidate the principles of deep learning, to offer 

a narrative overview of the contemporary state-of-the-art applications of deep learning in musculoskeletal 

imaging for practicing musculoskeletal radiologists, and to explore prospective future trajectories of this 

technology and its implications for the field. 

This study targets practicing musculoskeletal radiologists rather than research data scientists, thereby 

adopting a narrative structure that highlights the most therapeutically relevant applications. A formal 

systematic review was not conducted; instead, the PubMed database was queried using various general 

terms such as “deep learning radiology,” “artificial intelligence radiology,” and “deep learning 

musculoskeletal imaging,” along with more specific terms related to established applications of deep 

learning in musculoskeletal radiology, including “deep learning fracture,” “deep learning cartilage,” “deep 

learning orthopedics,” and “deep learning bone age,” among others. Manuscripts of significant clinical 

relevance to the everyday practice of musculoskeletal radiology were chosen for inclusion, with no stringent 

exclusion criteria based on publication year or topic matter. 

2. Deep Learning: Technical Considerations and Historical Context 

The technical theory and science of deep learning are intricate and may be challenging for a clinical 

radiologist without a background in data science to comprehend. It is beneficial for the practicing 

musculoskeletal radiologist interested in deep learning to possess a rudimentary comprehension of 

essential terminology and ideas. Numerous comprehensive reviews have recently been published, offering 

an in-depth exploration of the technical aspects of deep learning, which we recommend to technically 

inclined radiologists and clinical data scientists [2, 3, 7-10]. 

Artificial intelligence encompasses the discipline of programming computers to acquire the ability to 

execute complex tasks. In the first stages of artificial intelligence, meticulously crafted rules were developed 

to enable computers to achieve certain objectives; however, this methodology has intrinsic limits due to the 

escalating time and effort necessary to define and implement the rules. Conversely, machine learning is a 

subset of artificial intelligence that automates the development of analytical models and decision rules to a 

certain extent using statistical approaches, enabling computers to "learn" from data to recognize patterns. 

Nonetheless, image-based machine learning often needs the involvement of human image-processing 

specialists to identify the most significant imaging elements, such as textures, areas, edges, patterns, or 
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intensity values. Deep learning is a subset of machine learning in which the algorithm autonomously 

identifies the ideal imaging characteristics necessary to address the model's specific clinical inquiry, 

features that may not be easily recognizable to human specialists. The predominant architecture for deep 

learning in medical imaging is convolutional neural networks (CNNs).  

Convolutional Neural Networks (CNNs) achieved a crucial milestone when CNN secured victory in the 2012 

ImageNet picture categorization competition. The victorious CNN, known as AlexNet, attained a top 5 error 

rate of under 15% in image classification tasks, a remarkable accomplishment for the computer vision 

world since no algorithm had ever reached such a high degree of accuracy [11-13]. Following this pivotal 

moment, the rapid advancement of graphics processing units (GPUs), optimally designed for the intricate 

parallel processing necessary for operating a CNN, with several open-source frameworks, has facilitated a 

surge in deep learning research. Libraries of this kind include TensorFlow, Keras, and Caffe2/PyTorch [14-

17]. 

3. Training a Convolutional Neural Network model 

A convolutional neural network is termed as such because it simulates the functions of the human brain. 

Although a young kid may easily differentiate between images of a cat and a dog, articulating the precise 

morphological characteristics that facilitate this discrimination proves to be somewhat challenging. Both 

creatures possess fangs, tongues, whiskers, eyes, ears, and hair. A trained CNN can consistently recognize 

objects (or lesions) or categorize abnormalities without necessitating specific morphological parameters; 

it merely requires numerous images labeled as either “cat” or “dog,” or correspondingly, “fracture” or “no 

fracture.” Typically, images used for training a CNN do not demand manual preprocessing, feature 

extraction, or segmentation of regions of interest [18]. The CNN model is frequently characterized as a 

"black box" that identifies salient features from images and generates weighted probabilities for the 

specifically trained query, without requiring the user to specify any morphological characteristics to 

differentiate among the various output options. The CNN executes this intricate process by extracting both 

basic and complicated characteristics via many layers of convolutional kernels, which are then flattened 

into a vector and input into the neural network. The neural network employs forward and backward 

propagation to determine a weighted probability for the outputs of the training task (e.g., "fracture" or "no 

fracture").  

To develop an effective CNN model, a substantial quantity of pictures is required for training. As previously 

stated, it is unnecessary to annotate or delineate certain imaging characteristics. For example, if the 

objective of the CNN model is to identify distal radius fractures, it is unnecessary to emphasize the exact 

areas of the pictures containing the fracture, nor is it essential to indicate the location of the distal radius. 

The greater the number of photos supplied, the more precise the model will become. The number of 

pictures used for diverse musculoskeletal CNN models might vary from hundreds to tens of thousands of 

training images. A model trained on an inadequate number of photos may experience overfitting, rendering 

it inapplicable to clinical images outside the training dataset. After the CNN model has been trained on an 

adequate quantity of pictures, its diagnostic performance may be evaluated using a distinct dataset known 

as the validation set. 

4. Summary of clinical uses of deep learning in musculoskeletal radiology 

Identification of clinically significant anomalies in radiographs and cross-sectional imaging constitutes 

around twenty-five percent of musculoskeletal deep learning applications. The most prevalent is the 

automated identification of fractures, meniscal tears, and cartilage lesions [18-33]. Additional applications 

in this area include cartilage T2 mapping for osteoarthritis diagnosis, ACL tear identification, and the 

identification of degenerative and metastatic spinal lesions [30,34-37].  

Several studies concentrated on identifying fractures in radiographs, and the diagnostic efficacy of several 

algorithms is progressively reaching or surpassing expert levels. In 2017, Rajpurkar et al. trained a 

convolutional neural network (CNN) to identify upper-extremity fractures using a training dataset of 

11,184 patients, 13,457 studies, and 36,808 pictures, which is among the biggest publicly accessible labeled 
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datasets [38]. In a test set including 207 examples, the deep learning model attained an average AUC of 

0.929. The model's performance was comparable to that of the top three radiologists on finger radiographs 

(Cohen’s kappa value, κ of 0.389 compared to κ 0.410) and wrist radiographs (κ 0.931 vs κ 0.931), indicating 

agreement relative to the gold standard. The average κ for the 169-layer CNN was somewhat worse (0.705 

compared to 0.778) than the optimal performance of radiologists when considering all extremities 

radiographs [39,40]. Since its publication, the extensive dataset known as MURA (musculoskeletal 

radiographs) has been made publicly available to foster competition and advancement in automated 

fracture identification. Subsequently, public contributions have shown superior performance compared to 

the first deep learning model. As of April 2019, the live competition scoreboard for the top 8 models 

indicates κ values between 0.795 and 0.843, surpassing the performance of the best radiologist in the 

original research (0.778) [41]. 

Subsequent research has shown expert-level proficiency in identifying fractures of the upper extremities, 

lower extremities, and spine [18-20, 24-26]. Recent articles highlight hip fractures as a major contributor 

to long-term impairment [21, 38]. In 2019, Cheng et al. reported an accuracy of 91%, an AUC of 0.98, a 

sensitivity of 98%, and a false-negative rate of 2% for diagnosing hip fractures on frontal radiographs, based 

on a test set of 100 patients. This performance level was attained with a deep convolutional neural network 

pre-trained on 25,505 limb radiographs and then refined on 3,605 frontal pelvic radiographs. 

A significant constraint of this research is that CNN models must be trained on the particular body region 

being assessed, necessitating a substantial quantity of accurately labeled radiographs for each training 

batch, sometimes amounting to tens of thousands. Unlike humans, a convolutional neural network's 

capacity to identify a fracture in one body part does not transfer to another body part. Furthermore, the 

results of all documented fracture detection investigations are binary: fracture present or absent. 

Descriptions of fracture morphology or particular imaging results to inform therapy are now sparse. 

The identification of cartilage anomalies is relevant to musculoskeletal radiologists, orthopedic surgeons, 

and arthritis researchers. Liu et al. presented a very efficient automated deep-learning approach for 

cartilage identification [32]. The CNN model, trained on a dataset of 660 picture patches from 175 patients 

and evaluated on a test set of 1320 image patches, had a sensitivity of up to 88% and an AUC of 0.917, 

comparable to that of experienced radiologists. Pedoia et al. created a CNN-based deep neural network 

(DenseNet) that achieved an AUC of 0.83 for identifying cartilage defects and diagnosing osteoarthritis 

using T2 voxel-based relaxometry data [34]. It is essential to recognize that these cartilage-detection CNN 

models consist of two distinct CNNs: Initially, the first CNN segments the image regions containing cartilage, 

followed by the second CNN, which identifies cartilage anomalies. 

Bien et al. obtained an area under the receiver operating characteristic curve (AUC) of 0.847 for identifying 

meniscal tears using their CNN model (MRNet; 1130 training and 120 validation examinations) [30]. The 

network was further trained to identify ACL rips, with an AUC of 0.937 on the internal validation set. When 

evaluated on an external validation set of 183 examinations sourced from a public dataset of 917 tests from 

Croatia, the AUC for detecting ACL tears was somewhat lower at 0.824. Nevertheless, when MRNet was 

trained on the external dataset, the AUC increased to 0.911 on the external validation set. Couteaux et al. 

(AUC 0.906), Roblot et al. (AUC 0.906), and Lassau et al. (AUC 0.91) showed comparable results for meniscal 

tear detection in 2019 [27-29]. 

5. Classification 

Classification is the procedure by which an algorithm generates the likelihood of a label for a certain input 

picture. The process of identifying a previously stated abnormality is the most basic kind of categorization, 

since an abnormality may either be present or absent. Applications related to musculoskeletal conditions 

include automated assessment of osteoarthritis by radiography [42,43], evaluation of degenerative lumbar 

spinal canal and neuroforaminal stenosis [44], classification of intervertebral disc degeneration, and 

determination of skeletal age [46-52]. Additional musculoskeletal-specific applications include an 

algorithm that assesses the healing progression of torn Achilles tendons and the determination of patient 
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sex from hand and wrist radiographs, subsequently noted as an instance of AI exceeding human capability 

[45,53,54]. 

6. Automated assessment of osteoarthritis 

A prevalent job in musculoskeletal radiograph interpretation is the assessment of osteoarthritis severity. In 

2016, Antony et al. used transfer learning methodologies to leverage existing CNN characteristics for the 

development of an automated system for quantifying knee osteoarthritis, which classifies the condition into 

"mild," "moderate," or "severe" categories [42]. Utilizing images from the publicly accessible Osteoarthritis 

Initiative (OAI) dataset, which comprises 4476 patients, their algorithm attained superior accuracies in 

Kellgren–Lawrence osteoarthritis classification, with an average mean squared error (MSE) of 0.504, 

surpassing Wndchrm, a contemporary state-of-the-art open-source image classifier, which recorded an 

MSE of 2.459 [57]. In 2018, Tiulpin et al. exhibited human-level performance in the Kellgren–Lawrence 

classification, achieving an AUC of 0.93. This was accomplished using the Multicenter Osteoarthritis Study 

(MOST) dataset, including 18,376 photos, and evaluated on the OAI dataset, which has 5,960 images; both 

datasets are extensive and publicly accessible. Their publication also included class activation maps, which 

are color-coded regions in the picture that emphasize the visual attributes used by the model to reach its 

findings, providing insight into the model's automated decision-making process [43]. 

7. Automated assessment of spinal and neuroforaminal stenosis in degenerative spinal 

imaging 

An often executed, time-consuming activity in everyday musculoskeletal imaging is the detailed, level-by-

level analysis of degenerative alterations in spine MRI interpretation. This may be particularly time-

intensive in individuals with severe, multilayer disco vertebral degeneration. Furthermore, inter-reader 

dependability often exhibits poor levels [58]. 

 

The first AI model exhibiting human-level proficiency in lumbar spinal stenosis grading was released in 

2017 by Jamaludin et al. [56]. A training dataset of 12,018 hand-annotated disc levels from 2009 patients, 

derived from the Genodisc clinical dataset, was used to train a CNN. In a test cohort of 203 patients, the 

model attained a class average accuracy of 95.6% for disc identification and labeling. The model's 

capabilities included spinal canal stenosis grading, Pfirrmann grading of disc desiccation, assessment of 

disc space narrowing, evaluation of spondylolisthesis, identification of endplate defects, and detection of 

aberrant marrow signal alterations. Consequently, our algorithm can provide numerous reportable 

gradings, equivalent to the proficiency of a single radiologist, but requires just 1–2 minutes to process each 

lumbar MRI. 

Recently, Lu et al. at the MGH & BWH Center for Clinical Data Science created an automated model for 

grading spinal and foraminal stenosis, utilizing a U-net convolutional neural network for vertebral body and 

disc-level image segmentation. This model was developed using a dataset from 4,075 patients, comprising 

a training set of 15,957-disc levels and a test set of 3,420 levels. Notably, they employed natural language 

processing to extract ground-truth labels from existing radiology reports, thereby circumventing the labor-

intensive process of manual annotation. The class attained an average accuracy of 80% for spinal stenosis 

grading and 78% for neural foraminal stenosis grading. Nonetheless, a significant limitation of this method 

is the lack of a dependable gold standard, given that individual radiologists may exhibit considerable 

variability in grading degenerative spine conditions [59]. 

8. Evaluation of skeletal maturity 

Radiographic skeletal age assessment (SAA) serves as an essential instrument for pediatric 

endocrinologists to evaluate a child's growth status. Due to the visually predictable pattern of skeletal 

growth, assessing bone age is an endeavor especially well-suited for artificial intelligence. The automated 

evaluation of bone age using CNNs was a prevalent issue addressed by the deep learning research 

community [46-52]. This program garnered attention due to the RSNA Pediatric Bone Age Machine 
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Learning Challenge, which had over 100 applications competing for the title of the most precise automated 

bone age assessment tool [48]. A dataset including more than 14,000 hand radiographs has been made 

publicly accessible to developers. The training dataset included 12,611 annotated photos. Ground truth 

labels were established based on estimations documented in the corresponding radiology reports and 

assessed by a pediatric radiologist using the Greulich and Pyle approach. Algorithms were graded based on 

the mean absolute deviation (MAD) between AI estimations and the actual reference values. The premier 

method created by Cicero and Bilbily at the University of Toronto used Google’s Inception V3 network for 

image processing. Shaheen et al. demonstrated that the diagnostic performance of bone age assessment is 

superior when a radiologist is boosted by AI software, compared to AI alone, a radiologist alone, and a 

pooled cohort of experienced radiologists [52]. In a distinct investigation, Kim et al. showed that the reading 

durations of radiologists decreased by around 30%, from 1.8 to 1.38 minutes in each trial when enhanced 

with software [55]. 

9. Conclusions 

Advancements in deep learning within musculoskeletal radiology may be categorized as lesion detection, 

classification, segmentation, and non-interpretive tasks. In recent years, several instances of deep learning 

attaining expert-level performance in particular tasks across all four categories have been proven, however, 

a thorough interpretation of imaging studies remains unaccomplished. Interest in deep learning among 

academics, radiology leadership, and industry is on the rise, and these advancements are expected to 

influence the routine practice of musculoskeletal radiology in the future. 
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 دمج التعلم العميق في الأشعة العضلية الهيكلية: التطبيقات الحالية والتوجهات المستقبلية 

 الملخص 

دمج الشبكات  ، خاصة من خلال تقنيات التعلم العميق، تحولاً كبيراً في مجال الأشعة العضلية الهيكلية. يعزز  (AI) يُحدث الذكاء الاصطناعي  :الخلفية

 .من الكشف وتصنيف الحالات العضلية الهيكلية، مما يساعد في تلبية الطلب المتزايد على أطباء الأشعة (CNNs) العصبية الالتفافية

مستخلصة  تجُمع هذه المراجعة الأدبيات الحالية حول تطبيقات التعلم العميق في التصوير العضلي الهيكلي. تم اتباع نهج سردي لتحليل البيانات ال :الطرق 

باستخدام مصطلحات بحث عامة ومحددة تتعلق بالتعلم العميق في الأشعة. وتم اختيار الدراسات السريرية الرئيسية بناءً   PubMed من قاعدة بيانات

 .على أهميتها للتطبيقات العملية اليومية

تظُهر التطورات الحديثة أن خوارزميات التعلم العميق قادرة على تحديد الكسور، وإصابات الغضاريف، وتمزقات الأربطة بدقة، حيث تصل   :النتائج

الكشف  أحياناً إلى مستويات أداء مماثلة لأطباء الأشعة الخبراء. على وجه الخصوص، أظهرت الشبكات العصبية الالتفافية دقة تشخيصية عالية في  

كسور الأطراف العلوية والسفلية، مع تفوق بعض النماذج على المتخصصين البشر. تسلط المراجعة الضوء على التقييمات الآلية لمرض هشاشة عن  

 .العظام، وتضيق العمود الفقري، ونضج الهيكل العظمي، مما يظُهر إمكانات الذكاء الاصطناعي في تحسين سير العمل ودقة التشخيص

يوفر صعود التعلم العميق في الأشعة العضلية الهيكلية فرصاً كبيرة لتعزيز عمليات التشخيص. وعلى الرغم من أن العديد من الخوارزميات  :الاستنتاج

نها  عي، فإ تظُهر أداءً على مستوى الخبراء، إلا أن الحاجة إلى تفسير دقيق للدراسات التصويرية لا تزال ضرورية. ومع تطور تقنيات الذكاء الاصطنا

 .مهيأة للعب دور حاسم في مستقبل الأشعة العضلية الهيكلية، مما قد يعيد تشكيل الممارسات السريرية

 .الذكاء الاصطناعي، التعلم العميق، الأشعة العضلية الهيكلية، الشبكات العصبية الالتفافية، التصوير التشخيصي :الكلمات المفتاحية 

 


