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Abstract: This study presents a comprehensive evaluation of multiple machine learning models for 

predicting student performance within a smart learning environment. Utilizing a dataset from the Smart 

Learning Project, which includes data on 14 English PISA-like quizzes, 27 competencies, 8 schools, and 181 

students, the analysis involves data preprocessing, feature selection, model training, and evaluation. The 

models assessed include Random Forest, Support Vector Regression (SVR), AdaBoost, Bayesian Ridge, K-

Nearest Neighbors (KNN), ElasticNet, XGBoost, Gradient Boosting, and Stacking Ensemble. Performance 

metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

and R-squared (R²) are used to evaluate model efficacy. The results indicate that ensemble methods, 

particularly XGBoost and Stacking Ensemble, provide superior predictive accuracy, capturing complex 

relationships within the data. The study also highlights the importance of feature selection and data 

preprocessing in enhancing model performance. These findings underscore the potential of advanced 

machine learning techniques in educational analytics, offering valuable insights for personalized learning 

strategies and early intervention. 
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1. Introduction 

The exploration of machine learning applications for predicting students' academic performance has 

emerged as a pivotal research domain. A systematic literature review by Wu et al. [1] screened 83 indexed 

research articles between 2020 and 2023, examining machine learning applications in predicting academic 

achievement. The findings highlighted that ensemble learning outperformed other methods in predicting 

academic performance, achieving an average accuracy rate of 87.67%, closely followed by the support 

vector machine (SVM) approach with an average accuracy of 84.30%. Significant predictors of academic 

achievement included demographic, academic, and behavioral factors, emphasizing the importance of early 

identification and timely interventions to enhance educational outcomes, which aligns with SDG 4, focusing 

on quality education. 

Additionally, Zhao et al. [2] developed a quantitative prediction model of academic performance, 

investigating the performance of various machine learning algorithms and the influencing factors based on 

collected educational data. Their results concluded that machine learning provides an excellent tool to 
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characterize educational behavior and represent the nonlinear relationship between academic 

performance and its influencing factors. They stressed the necessity of considering multiple influencing 

factors in the machine learning model to accurately characterize educational laws and evaluate academic 

performance. 

Moreover, Sateesh, Rao, and Lakshmi [3] concentrated on an ensemble classifier with rule mining to predict 

students' academic success, utilizing the weighted Rough Set Theory method and optimizing the weight 

function with a meta-heuristic algorithm. Their extensive tests on various datasets demonstrated that their 

technique outperformed conventional approaches, achieving a 92.77% accuracy rate and a sensitivity rate 

of 94.87%. Furthermore, Çınar and Yılmaz Gündüz [4] used datasets prepared with secondary school 

students in Portugal to predict academic performance. They applied various machine learning algorithms, 

including deep learning and multilayer perceptrons, using the 10-fold cross-validation method to maximize 

correct prediction rates. Their experiments compared the efficiency of algorithms in predicting student 

success by selecting features and comparing results. 

Similarly, Şevgı̇n [5] conducted a comparative study of Bagging and Boosting algorithms among ensemble 

methods, comparing the classification performance of TreeNet and Random Forest methods using data 

from the ABİDE application in education. The analyses showed that TreeNet performed more successfully 

in terms of classification accuracy, sensitivity, F1-score, and AUC value, while Random Forest excelled in 

specificity and accuracy. 

In addition, Abdul Bujang et al. [6] reviewed existing research on handling imbalanced classification in 

higher education, focusing on student grade prediction. Their study highlighted the broad application of 

the SMOTE oversampling method in resolving imbalanced problems and emphasized the need for hybrid 

and feature selection methods to boost prediction performance. Correspondingly, Ye et al. [7] proposed an 

online learning performance prediction model, SA-FEM, based on adaptive feature fusion and selection. 

Their analysis showed that their adaptive fusion strategy outperformed benchmark methods in supporting 

online learning performance prediction. Li and Yang [8] also proposed a personalized education resource 

recommendation algorithm, XMAMBLSTM, using deep learning to improve computational efficiency and 

reduce propagation error rates in entity recognition and relation extraction. 

In a related context, Mastrothanasis, Zervoudakis, and Kladaki [9] explored the role of Computational 

Intelligence (CI) techniques in digital theater performances, highlighting the use of the Flying Fox Optimizer 

algorithm to form homogeneous student groups and optimize theater dynamics in virtual cultural 

environments. Moreover, López-García et al. [10] presented a deep learning model based on convolution 

to address imbalanced classes, demonstrating its effectiveness in predicting student excellence using 

features from a large dataset of undergraduate students at the University of Jordan. 

Finally, Alshamaila et al. [11] proposed a model using the XGBoost algorithm to predict academic failure, 

showing superior performance with TOPSIS-based feature extraction and ADASYN oversampling. Malik 

and Jothimani [12] also evaluated FeatureX using various machine learning models, demonstrating its 

effectiveness in identifying influential predictors and enhancing performance forecasting accuracy to 

support at-risk students and reduce dropout rates, fostering inclusive education. These research 

underscores the critical role of machine learning in educational contexts, providing tools for predicting 

academic performance, identifying at-risk students, and enabling timely interventions to enhance 

educational outcomes. 

The reviewed literature underscores the pivotal role of machine learning in educational contexts, 

demonstrating its potential in accurately predicting academic performance and identifying at-risk students. 

Various studies have highlighted the superiority of ensemble learning methods and the importance of 

incorporating diverse influencing factors for better prediction accuracy. This research will evaluate 

multiple machine learning models, focusing on their application within a smart learning environment. The 

ultimate goal is to enhance educational outcomes through timely and targeted interventions, leveraging the 

capabilities of advanced predictive models. This approach ensures a holistic understanding of each model's 

strengths and applicability, contributing to improving educational performance and fostering inclusive 
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learning environments. 

2. Methodology 

This study adopts a comprehensive approach to evaluating multiple machine learning models for 

predicting student performance within a smart learning environment. The analysis encompasses various 

stages, from data preprocessing and feature selection to model diversity and evaluation metrics, ensuring 

a thorough understanding of each model's capabilities in the educational context. 

2.1 Dataset 
This study utilizes a dataset exported from the Smart Learning Project, accessible through the website 
https://smartlearning.kku.ac.th/. The dataset includes comprehensive details on student performance 
across various quizzes. Specifically, it encompasses data on 14 English PISA-like quizzes, 27 competencies, 
8 schools, and 181 students involved in the experiment. Key columns in the dataset include: 

- quiz: The name of the quiz. 

- competency: The competency level of the quiz. 

- user: A unique identifier for each user. 

- name: The first name of the student. 

- lastname: The last name of the student. 

- attempt: The attempt number for the quiz. 

- student: A combined identifier for each student. 

- institution: The name of the institution (with many missing values). 

- correct: The number of correct answers (with many missing values). 

- maximum: The maximum possible score on the quiz. 

- score: The actual score obtained by the student (with many missing values). 

The dataset includes both identifying information about the students and detailed performance metrics, 

though it is noted that several columns, such as 'institution,' 'correct,' and 'score,' contain a significant 

amount of missing data. 

 
 

Figure 1: Correlation Matrix of Key Features 
 

The correlation analysis reveals that 'correct' and 'score' are strongly correlated, followed by 'maximum' 
and 'score', and 'correct' and 'maximum'. This suggests that both the number of correct answers and the 
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maximum score are significant predictors of student performance. This analysis provides valuable insights 
into feature relationships, helping to refine the predictive model for student performance. 
 
2.2 Data Preprocessing 
The data preprocessing phase is crucial for ensuring the quality and reliability of the dataset. The study 
handles missing values by dropping rows with null entries in the 'correct' or 'score' columns, which helps 
maintain the integrity of the analysis. Additionally, the 'institution' column, which contains categorical data, 
is processed using one-hot encoding. This transformation is essential for incorporating categorical 
variables into the machine learning models, allowing them to utilize institutional information effectively. 
 
2.3 Feature Selection 
The selected features for the analysis include 'correct', 'maximum', and the one-hot encoded 'institution' 
columns. This selection strikes a balance between quantitative performance metrics and institutional 
factors, potentially capturing both individual student performance and the broader impact of institutional 
contexts. By integrating these features, the study aims to provide a holistic view of the factors influencing 
student scores. 
 
2.4 Model Diversity 
Choosing a diverse set of machine learning algorithms to evaluate and predict student performance within 
a smart learning environment is crucial for several reasons. Each algorithm offers unique advantages and 
can capture different patterns and relationships in the data. This study evaluates a diverse array of 
regression models, each with distinct strengths and methodologies. The models include: 
 
- Random Forest: An ensemble learning method that constructs multiple decision trees and averages their 
predictions to improve robustness and accuracy. Random Forest uses bootstrap aggregating (bagging) to 
create diverse subsets of the training data for each tree [13]. 
 
f̂(x) = 1/B ∑(i=1 to B) fi(x) 
 
where f̂(x) is the Random Forest prediction, fi(x) is the prediction of the i-th tree, and B is the number of 
trees. 
 
Random Forest is robust and can handle both classification and regression tasks. It is effective in dealing 
with datasets that have a mix of categorical and numerical features, which is common in student 
performance datasets. It also handles missing values and outliers well, and its ensemble nature helps in 
reducing overfitting. 
 
- Support Vector Regression (SVR): Utilizes linear and polynomial kernels to capture both linear and non-
linear relationships between input features and the target variable. SVR finds a hyperplane that maximizes 
the margin while tolerating some errors within an ε-insensitive tube [14]. 
 
f(x) = wᵀΦ(x) + b 
 
where w is the weight vector, Φ(x) is the kernel function, and b is the bias term. 
 
SVR is useful for predicting continuous outcomes, such as grades or scores. It can capture both linear and 
non-linear relationships between features and the target variable using different kernels. This flexibility 
makes it suitable for modeling complex relationships in student performance data. 
 
- AdaBoost: An ensemble technique that combines weak learners by iteratively adjusting the weights of 
incorrectly predicted samples to improve model performance. AdaBoost adjusts sample weights after each 
weak learner is added, focusing more on misclassified samples [15]. 
 
F(x) = ∑(t=1 to T) αt ht(x) 
 
where F(x) is the final classifier, ht(x) are weak learners, and αt are their weights. 
 
AdaBoost is good at improving the performance of weak learners. For student performance data, it can 
combine multiple weak models (e.g., simple decision stumps) to create a strong predictive model. This is 
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particularly useful when the initial models are not very accurate on their own. 
 
- Bayesian Ridge Regression: Applies Bayesian inference to linear regression, allowing for regularization 
and uncertainty estimation in the model parameters. This method introduces prior distributions on model 
parameters to perform regularization [16]. 
 
p(w|y,X) ∝ p(y|X,w) p(w) 
 
where p(w|y,X) is the posterior distribution of weights given data. 
 
Bayesian Ridge Regression provides probabilistic predictions, which can be valuable for understanding the 
uncertainty in the model's predictions. It applies regularization, helping to prevent overfitting, especially 
in datasets with many features and relatively few samples. 
 
- K-Nearest Neighbors (KNN): A non-parametric method that predicts target values based on the average 
of the k-nearest neighbors in the feature space. KNN makes predictions based on the majority vote 
(classification) or average (regression) of the k nearest neighbors [17]. 
 
f̂(x) = 1/k ∑(i in Nk(x)) yi 
 
where Nk(x) is the neighborhood of x defined by the k closest points. 
 
KNN is a simple and intuitive algorithm that can be used for both classification and regression. It is 
particularly effective when the relationship between the features and the target variable is non-linear. In 
student performance datasets, it can predict a student's outcome based on the performance of similar 
students. 
 
- ElasticNet: Combines the L1 and L2 penalties of the Lasso and Ridge methods, making it suitable for 
datasets with highly correlated features. ElasticNet combines L1 and L2 regularization to handle 
multicollinearity and feature selection [18]. 
 
min(w) ||y - Xw||² + α[ρ||w||₁ + (1-ρ)/2 ||w||²] 
 
where α controls overall regularization and ρ balances L1 and L2 penalties. 
 
ElasticNet combines the strengths of both Lasso and Ridge regression, making it suitable for datasets with 
many features, especially when those features are correlated. This is often the case in educational datasets, 
where different performance indicators can be interrelated. 
 
- XGBoost: An efficient implementation of gradient boosting that includes regularization and advanced 
features like parallel tree construction. XGBoost uses second-order gradients and regularization terms for 
more efficient and accurate boosting [19]. 
 
obj = ∑(i=1 to n) l(yi, ŷi) + ∑(k=1 to K) Ω(fk) 
 
where l is the loss function and Ω is the regularization term. 
 
XGBoost is a powerful gradient boosting algorithm known for its high performance and efficiency. It is 
capable of handling large datasets with many features and provides regularization to avoid overfitting. This 
makes it ideal for complex tasks such as predicting student performance, where many factors may influence 
the outcome. 
 
- Gradient Boosting: Builds models sequentially, with each new model attempting to correct the errors of 
the previous ones. Gradient Boosting iteratively adds weak learners to minimize a differentiable loss 
function [20]. 
 
F_m(x) = F_(m-1)(x) + γ_m h_m(x) 
 
where F_m is the model at iteration m, h_m is the weak learner, and γ_m is the step size. 
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Gradient Boosting builds models sequentially to correct the errors of previous models. It is highly flexible 
and can be used for both regression and classification tasks. Its ability to model complex relationships 
makes it a strong candidate for predicting student performance based on multiple factors. 
 
- Stacking Ensemble: Combines multiple machine learning models using a meta-model, leveraging the 
strengths of diverse models to improve predictive performance. Stacking uses predictions from base 
models as inputs to a meta-model for final predictions [21]. 
 
f_stack(x) = g(f₁(x), f₂(x), ..., f_K(x)) 
 
where g is the meta-model and f_i are base models. 
 
Stacking combines multiple machine learning models to leverage their strengths and improve predictive 
performance. For student performance measurement, it can integrate various models to capture different 
aspects of the data, leading to more accurate and robust predictions. 
 
These algorithms encompass a range of techniques including ensemble methods, regression models, 
probabilistic approaches, and non-parametric methods. This diversity ensures that different aspects of the 
data are captured. Student performance data can be complex, with a mix of numerical, categorical, and 
potentially missing data. These algorithms offer various ways to handle these characteristics effectively. 
The selected algorithms provide a balance between high-bias and high-variance models, which is crucial 
for building a robust predictive model. Combining interpretable models (like KNN and Bayesian Ridge 
Regression) with high-performance models (like XGBoost and Gradient Boosting) allows for both 
understanding the predictions and achieving high accuracy. 
 
These algorithms were chosen because they offer a range of capabilities that can address the diverse nature 
of student performance datasets. They handle both linear and non-linear relationships, provide 
mechanisms for regularization to prevent overfitting, and are capable of dealing with both classification 
and regression problems. By using a mix of these algorithms, we can build a comprehensive model that 
captures the complexity of student performance and provides reliable predictions. 
 
2.5 Evaluation Metrics 
Choosing appropriate evaluation metrics is crucial when assessing machine learning models for predicting 
student performance in a smart learning environment. The models are evaluated using four key metrics to 
ensure a comprehensive assessment: 
 
1. Mean Squared Error (MSE) 
MSE measures the average squared difference between predicted and actual values. It penalizes larger 
errors more heavily due to squaring [22]. 
 
MSE = (1/n) ∑(i=1 to n) (yi - ŷi)² 
 
Where n is the number of samples, yi is the actual value, and ŷi is the predicted value. 
 
MSE is useful when larger errors are particularly undesirable. In predicting student performance, 
significant mis-predictions could lead to inappropriate interventions or resource allocations. MSE 
penalizes these larger errors more heavily, making it a good choice if avoiding substantial misjudgments is 
a priority. 
 
2. Root Mean Squared Error (RMSE) 
RMSE is the square root of MSE. It provides an error measure in the same unit as the target variable, making 
it more interpretable [23]. 
 
RMSE = √[(1/n) ∑(i=1 to n) (yi - ŷi)²] 
 
RMSE is in the same unit as the target variable (e.g., test scores), making it more interpretable for educators 
and administrators. It provides a clear idea of the average magnitude of the prediction error, which is 
crucial for understanding the practical implications of the model's accuracy in an educational context. 
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3. Mean Absolute Error (MAE) 
MAE measures the average absolute difference between predicted and actual values. It's less sensitive to 
outliers compared to MSE and RMSE [23]. 
 
MAE = (1/n) ∑(i=1 to n) |yi - ŷi| 
 
MAE is less sensitive to outliers compared to MSE and RMSE. In an educational setting, there might be 
students with exceptional circumstances leading to outlier performances. MAE provides a more robust 
measure of model performance across the majority of students, without being overly influenced by these 
outliers. 
 
4. Coefficient of Determination (R²) 
R² represents the proportion of variance in the dependent variable that is predictable from the independent 
variable(s). It ranges from 0 to 1, with 1 indicating perfect prediction [24]. 
 
R² = 1 - [∑(yi - ŷi)² / ∑(yi - ȳ)²] 
 
Where ȳ is the mean of actual values. 
 
R² gives an idea of how much of the variance in student performance can be explained by the model. This 
is particularly useful in an educational context as it helps understand the predictive power of the chosen 
features. A high R² suggests that the model captures a significant portion of the factors influencing student 
performance, which can guide further educational strategies and interventions. 
 
Using these metrics in combination provides a comprehensive evaluation. MSE and RMSE highlight models 
that avoid large prediction errors. MAE gives a robust measure of average error. R² indicates how well the 
model explains the variability in student performance. These metrics provide a rounded view of model 
performance, addressing both the magnitude and direction of errors. The evaluation process involves 
cross-validation to ensure robust performance metrics and to assess the models' ability to generalize to 
unseen data. 
 
This multi-faceted approach ensures that the chosen model not only minimizes prediction errors but also 
provides meaningful insights into the factors affecting student performance. This is crucial in a smart 
learning environment where the goal is not just prediction, but also understanding and improving the 
learning process. 
 
2.6 Visualization 
To facilitate the comparison of model performance, the study generates bar plots for each evaluation 
metric. These visualizations offer a clear and intuitive understanding of how different models perform 
across various metrics. 
 
2.7 Key Implications 
The study's approach allows for a thorough comparison of various regression techniques, highlighting the 
strengths of ensemble methods in improving predictive accuracy. The inclusion of one-hot encoded 
institution data enables the analysis to capture the impact of different educational institutions on student 
performance. The use of multiple evaluation metrics provides a well-rounded view of model robustness. 
 
The current feature set, while informative, could benefit from additional derived features or interaction 
terms to enhance model performance. Implementing hyperparameter tuning techniques such as grid 
search or random search could further optimize model performance. If the data has a temporal component, 
incorporating time-based features or using time series-specific models could be beneficial. Future work 
should also explore model interpretability, especially for complex ensemble methods, and implement k-
fold cross-validation for more robust performance estimates. 
 
In this study provides a solid foundation for understanding predictive modeling of student scores in a smart 
learning context. The comprehensive comparison of various models, coupled with the inclusion of 
institutional effects, offers valuable insights into the factors influencing student performance. The results 
could inform educational policy decisions and aid in developing more effective personalized learning 
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strategies. 
 

3. Results 

This section provides a detailed presentation of the results for each machine learning model evaluated in 
the study. The performance of each model is assessed using key metrics such as the coefficient of 
determination (R²) and Mean Squared Error (MSE), among others. These metrics offer insights into how 
well each model predicts student performance and generalizes to new data. 
 

Table 1: Comparative Evaluation of Machine Learning Models for Predicting Student Performance 
Model MSE RMSE MAE R² 

Random Forest 1.790 1.338 0.204 0.997 

SVR (Linear) 419.153 20.473 12.418 0.217 

SVR (Polynomial) 563.266 23.733 17.151 -0.052 

AdaBoost 110.587 10.516 8.352 0.793 

Bayesian Ridge 358.883 18.944 12.908 0.330 

KNN 14.551 3.815 1.676 0.973 

ElasticNet 368.109 19.186 13.284 0.312 

XGBoost 0.822 0.907 0.203 0.998 

Gradient Boosting 5.469 2.339 1.490 0.990 

Stacking Ensemble 1.136 1.066 0.210 0.998 

 
Table 1 presents a comparative evaluation of various machine learning models for predicting student 
performance in a smart learning environment, utilizing multiple performance metrics such as Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of 
determination (R²). The models assessed include ensemble methods, support vector machines, boosting 
algorithms, and other regression techniques. The comparative analysis reveals substantial variation in 
performance across different models, as evidenced by the range of values across all metrics. XGBoost and 
Stacking Ensemble emerged as the top performers, with the highest R² values of 0.998465 and 0.997877, 
respectively, and the lowest error metrics across MSE, RMSE, and MAE. These results indicate that these 
models provide the most accurate predictions and generalize well to new data. Ensemble methods, 
particularly Random Forest and Gradient Boosting, also demonstrated excellent performance with R² 
values above 0.98 and relatively low error metrics. These models effectively aggregate the predictions of 
multiple trees to reduce overfitting and improve robustness. In contrast, both linear and polynomial 
Support Vector Regression (SVR) models performed poorly in this context. The polynomial SVR, in 
particular, showed a negative R² value, indicating that it performed worse than a simple horizontal line fit. 
K-Nearest Neighbors (KNN) showed moderate performance, with an R² of 0.972819, outperforming some 
more complex models like AdaBoost and Bayesian Ridge. ElasticNet and Bayesian Ridge demonstrated 
relatively poor performance compared to the ensemble methods, with R² values of 0.31237 and 0.329605, 
respectively. The best performing model, XGBoost, achieved an R² of 0.998465, an MSE of 0.82189685, an 
RMSE of 0.906585, and an MAE of 0.203105. These metrics suggest that XGBoost is highly effective at 
capturing the complex relationships in the data, providing highly accurate predictions. XGBoost's success 
can be attributed to its ability to handle non-linear relationships and interactions between features, its 
built-in regularization methods to prevent overfitting, and its capability to manage missing data efficiently. 
The Stacking Ensemble, which integrates multiple base models (Random Forest, XGBoost, and KNN) using 
Gradient Boosting as the meta-learner, also demonstrated near-exceptional performance with an R² of 
0.997877. This indicates that combining different models can leverage their strengths and provide robust 
predictions. Random Forest also performed admirably, with an R² of 0.996656, demonstrating the 
effectiveness of aggregating the results of multiple decision trees to enhance prediction accuracy. The 
performance of the Stacking Ensemble, nearly matching that of XGBoost, highlights the effectiveness of 
hybrid models. These models combine the strengths of multiple learning algorithms, resulting in superior 
predictive performance. The detailed comparison shows that while individual models like XGBoost excel, 
combining them with other models can yield results that are equally compelling.  
 
3.1 Feature Importance 
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While the feature importance scores are not explicitly provided in this summary, XGBoost and other tree-
based models typically allow for the extraction of these scores. Generally, features directly related to 
student performance, such as 'correct' scores, are likely to be the most significant predictors. Institutional 
factors may also play a crucial role, depending on the variance in performance across different institutions. 
 
The results indicate that XGBoost is the best performing model overall, given its highest R² value and lowest 
error metrics across all categories. The Stacking Ensemble model also performed exceptionally well, 
suggesting that hybrid approaches can effectively combine the strengths of different models for enhanced 
predictive accuracy. Random Forest and Gradient Boosting further demonstrate the robustness of 
ensemble methods in predicting student performance. These findings underscore the potential of advanced 
machine learning techniques to improve data-driven decision-making in education, enabling early 
intervention and personalized learning strategies. Future research should continue exploring sophisticated 
hybrid models and advanced feature engineering to further enhance predictive accuracy and applicability 
in diverse educational contexts. 
 
In summary, the results indicate that ensemble methods, particularly XGBoost and the Stacking Ensemble, 
offer superior predictive accuracy and robustness. These models not only explain a large proportion of the 
variance in student performance but also maintain low error rates, making them highly effective for 
educational analytics. Conversely, simpler models like ElasticNet and Bayesian Ridge, as well as the 
polynomial SVR, showed limited effectiveness, highlighting the need for more sophisticated approaches to 
capture the complexities of educational data. 
 
3.2 Visual Analysis 
To illustrate model performance and fit, we employed various visual analysis techniques, including 
boxplots and residual plots. Boxplots were used to compare the distribution of prediction errors across 
different models, providing a clear visual representation of each model's accuracy and variability. This 
allows for an easy comparison of central tendencies and the spread of errors, highlighting which models 
consistently perform better. Residual plots, on the other hand, were utilized to examine the residuals 
(differences between actual and predicted values) for each model. These plots help in identifying patterns 
in the residuals, indicating how well the models fit the data. For instance, a well-fitting model will show 
residuals randomly scattered around zero, while patterns or trends in the residuals may suggest areas 
where the model could be improved. Together, these visual tools provide a comprehensive understanding 
of model performance, highlighting strengths and weaknesses in a clear and interpretable manner. 
 

 
Figure 2: Predicted vs Actual Performance for Various Machine Learning Models 

 
Figure 2 illustrates the performance of various machine learning models in predicting student scores. Each 
point represents a model's prediction compared to the actual student performance, with the ideal scenario 
being represented by a red dashed line where predictions perfectly match the actual values. Models such 
as XGBoost, Gradient Boosting, and Random Forest show high accuracy, with predictions closely clustered 
around the ideal line, indicating their robustness and reliability in capturing patterns in the data. XGBoost, 
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in particular, stands out with its predictions aligning tightly with the actual values, demonstrating its 
effectiveness in handling complex data. 
 
In contrast, SVR (Polynomial) performs poorly, with predictions scattered far from the ideal line, including 
negative predicted values for positive actual values, indicating a significant misfit. KNeighbors and 
Bayesian Ridge show moderate performance, capturing general trends but lacking the precision of top-
performing models. The overall trend reveals that ensemble methods, especially XGBoost and Gradient 
Boosting, provide the most accurate and reliable predictions, highlighting their capability to handle the 
variability in student performance data effectively. 
 
The plot underscores the importance of model selection, demonstrating that while some models excel in 
predictive accuracy, others struggle to capture the underlying patterns. Ensemble methods, in particular, 
emerge as superior in managing the complexities of educational data, making them valuable tools for 
accurate student performance prediction. 

 

 
Figure 3: Error Distribution of Predictions for Various Machine Learning Models 

 
Figure 3 displays the distribution of prediction errors for various machine learning models used to predict 
student performance. The models included are Random Forest, SVR (Linear and Polynomial), AdaBoost, 
Bayesian Ridge, KNeighbors, ElasticNet, XGBoost, and Gradient Boosting, each represented by different 
colors. The plot shows that the majority of models have their error distributions tightly centered around 
zero, indicating that their predictions are generally close to the actual values. Notably, models like XGBoost, 
Gradient Boosting, and Random Forest exhibit a very high peak at zero error, demonstrating their high 
accuracy and minimal deviation from the true scores. These models are effective in capturing the 
underlying patterns in the data, leading to precise predictions with little error. In contrast, the SVR 
(Polynomial) model displays a wider error distribution, with errors spreading far from zero, indicating 
poor performance and significant deviation in its predictions. This suggests that the polynomial SVR 
struggles to fit the data accurately, resulting in higher prediction errors. Similarly, models like AdaBoost 
and Bayesian Ridge show wider error distributions compared to the top-performing models, indicating 
moderate accuracy but less reliability in their predictions. Overall, the density plot underscores the 
superior performance of ensemble methods, particularly XGBoost and Gradient Boosting, which 
demonstrate the smallest errors and highest accuracy in predicting student performance. The tight 
clustering of errors around zero for these models highlights their robustness and effectiveness in handling 
educational data. Conversely, models with wider error distributions, such as SVR (Polynomial), indicate the 
need for more sophisticated approaches to achieve better predictive accuracy. 
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Figure 4: Model Comparison by Mean Absolute Error (MAE) 

 
Figure 4 illustrates the Mean Absolute Error (MAE) for various machine learning models in predicting 
student performance. XGBoost, Gradient Boosting, and the Stacking Ensemble exhibit the lowest MAE, 
indicating high predictive accuracy. Conversely, models like SVR (Polynomial) and Bayesian Ridge display 
higher MAE values, reflecting less accurate predictions. Random Forest and KNeighbors also perform 
moderately well, with lower MAE compared to simpler models. This plot underscores the superior accuracy 
of ensemble methods, particularly XGBoost and Gradient Boosting, in minimizing prediction errors and 
effectively capturing the underlying patterns in the data. 
 

 
Figure 5: Model Comparison by Mean Squared Error (MSE) 

 
Figure 5 displays the Mean Squared Error (MSE) for various machine learning models predicting student 
performance. XGBoost, Gradient Boosting, and the Stacking Ensemble exhibit the lowest MSE values, 
indicating high accuracy with minimal prediction errors. Conversely, models like SVR (Polynomial) and 
Bayesian Ridge show higher MSE values, reflecting poorer performance. Random Forest and KNeighbors 
demonstrate moderate performance with relatively lower MSE compared to simpler models. This plot 
highlights the superior accuracy of ensemble methods, particularly XGBoost and Gradient Boosting, in 
effectively capturing and predicting student performance with minimal errors. 
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Figure 6: Model Comparison by Root Mean Squared Error (RMSE) 

 
Figure 6 displays the Root Mean Squared Error (RMSE) for various machine learning models predicting 
student performance. XGBoost, Gradient Boosting, and the Stacking Ensemble show the lowest RMSE 
values, indicating high accuracy and minimal prediction errors. Conversely, SVR (Polynomial) and Bayesian 
Ridge have higher RMSE values, reflecting poorer performance. Random Forest and KNeighbors 
demonstrate moderate performance with relatively lower RMSE compared to simpler models. This plot 
highlights the superior accuracy of ensemble methods, particularly XGBoost and Gradient Boosting, in 
effectively capturing and predicting student performance with minimal errors. 

 

 
Figure 7: Model Comparison by R-squared (R²) Value 

 
Figure 7 displays the coefficient of determination (R²) for various machine learning models predicting 
student performance. XGBoost, Gradient Boosting, and the Stacking Ensemble exhibit the highest R² values, 
indicating that these models explain the largest proportion of variance in the data. Conversely, SVR 
(Polynomial) and Bayesian Ridge show lower R² values, reflecting poorer performance in capturing the 
underlying patterns. Random Forest and KNeighbors demonstrate moderate performance with relatively 
higher R² compared to simpler models. This plot highlights the superior predictive power of ensemble 
methods, particularly XGBoost and Gradient Boosting, in accurately modeling student performance. 
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Figure 8: Residual Plots for Various Machine Learning Models 

 
Figure 8 is the residual plots for various machine learning models predicting student performance reveal 
key insights into model accuracy. XGBoost and Gradient Boosting show residuals tightly clustered around 
zero, indicating high predictive accuracy. Random Forest and KNeighbors also display minimal residuals, 
suggesting moderate accuracy. Conversely, SVR (Polynomial) and Bayesian Ridge exhibit large, scattered 
residuals, reflecting significant prediction errors and poor model fit. AdaBoost and ElasticNet show 
patterns of systematic errors, indicating potential biases. These plots highlight the superior performance 
of ensemble methods, particularly XGBoost and Gradient Boosting, in accurately predicting student 
performance with minimal residual errors. 
 

 
 

Figure 9: Residual Plot for XGBoost Model 
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Figure 9 is the residual plot for XGBoost in predicting student performance shows that the residuals are 
tightly clustered around the zero line, indicating high accuracy. Most points are near the red dashed line, 
reflecting minimal deviation between the actual and predicted values. The spread of residuals remains 
consistent across the range of actual values, suggesting that XGBoost maintains its accuracy throughout the 
dataset. Few outliers are present, which indicates occasional prediction errors but overall reliable 
performance. This plot highlights XGBoost's effectiveness in providing precise predictions with minimal 
error, making it a robust model for predicting student performance. 
 

 
Figure 10: Residual Plot for Gradient Boosting Model 

 
Figure 10 is the residual plot for Gradient Boosting in predicting student performance shows that the 
residuals are generally close to the zero line, indicating high accuracy. The points are scattered around the 
red dashed line with minimal deviation, suggesting reliable predictions. However, a slight curve in the 
residuals indicates a small systematic error, particularly for higher predicted values. Despite this, the model 
performs well overall, with most residuals within a narrow range, reflecting its effectiveness in capturing 
the underlying patterns in the data. Gradient Boosting proves to be a robust model, providing accurate 
predictions with minor inconsistencies. 
 

 
Figure 11: Residual Plot for Random Forest Model 

 
Figure 11 is the residual plot for Random Forest in predicting student performance shows residuals closely 
clustered around the zero line, indicating high accuracy. Most points are near the red dashed line, reflecting 
minimal prediction errors. There are a few outliers, but overall, the residuals remain consistently low 
across the range of predicted values. This indicates that Random Forest effectively captures the underlying 
patterns in the data, providing reliable predictions with minimal error. The slight spread at the higher 
values suggests minor deviations, but the overall performance is robust and dependable. 
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Table 2 shows the confusion matrix for XGBoost, which shows a high overall accuracy of 95% in predicting 
student performance. The model exhibits perfect precision (1.00) for below-threshold predictions and 
perfect recall (1.00) for above-threshold predictions. The F1-scores are 0.94 and 0.95 for below and above 
thresholds, respectively, indicating a balanced performance. The macro and weighted averages for 
precision, recall, and F1-score are all 0.95, demonstrating the model's robustness and reliability in 
classification tasks. This high accuracy and consistency across metrics highlights XGBoost's effectiveness 
in accurately distinguishing student performance levels. 
 
Table 2: Confusion Matrix for XGBoost Model 

 precision recall f1-score support 
Below Threshold   1.00 0.89 0.94        464 
Above Threshold    0.90 1.00 0.95        493 
     
       accuracy    0.95 957  
      macro avg     0.95 0.94 0.95        957 
weighted avg 0.95 0.95 0.95       957 

 
 

 
Figure 12: Confusion Matrix for XGBoost Model 

 
Figure 12 displays the confusion matrix for the XGBoost model used in predicting student performance, 
categorized by a threshold. The matrix shows the number of true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). The values indicate that the model correctly predicted 412 
instances below the threshold (TN), 493 instances above the threshold (TP), while there were 52 false 
positives (FP) and 0 false negatives (FN). The color intensity represents the density of the predictions, 
providing a clear visualization of the model's performance in classification tasks. This figure provides 
classification performance metrics useful for binary classification or threshold-based analysis in regression 
tasks. The most important features in the XGBoost model are 'correct', with an importance score of 
0.533694, and 'maximum', with an importance score of 0.452255. These features are significantly more 
predictive than others, with 'correct' being the most critical. 
 
Institutional features have much lower importance scores, with 'institution_SKKU' being the highest at 
0.013349. This indicates that the number of correct answers and the maximum possible score are the 
strongest predictors of the overall score, while the institution has a minor impact. This finding aligns with 
the expectation that direct performance metrics are the most predictive of student performance, while 
institutional effects are less significant. 
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The results demonstrate that ensemble and boosting methods, particularly XGBoost and Stacking 
Ensemble, are most effective for this regression task. These models capture complex relationships in the 
data effectively. Conversely, the poor performance of SVR models suggests that the data structure does not 
suit the assumptions of these algorithms. 
 

The performance gap between the best and worst models highlights the importance of model selection in 

machine learning tasks and the benefits of ensemble methods in handling complex, non-linear 

relationships. Future research should investigate the importance of feature in top-performing models, 

hyperparameter tuning to enhance performance, and exploring data characteristics that favor ensemble 

methods. These insights are valuable for model selection and optimization in similar regression tasks, 

especially in complex or non-linear data contexts. 

4. Discussion 

Our comprehensive evaluation of various regression models for predicting student performance reveals 
important insights into model performance and suitability for this task. Consistent with findings from prior 
studies, ensemble methods, particularly tree-based algorithms, demonstrated a clear advantage in 
capturing the underlying patterns in our dataset [1], [2]. Random Forest emerged as the top performer, 
exhibiting the highest R² score and lowest error metrics (MSE, RMSE, MAE). This superior performance can 
be attributed to its ensemble nature, which mitigates overfitting by averaging predictions from multiple 
decision trees, each trained on bootstrap samples with random feature selection. This approach enhances 
the model's ability to generalize across diverse data points, aligning with Zhao et al.'s findings on the 
effectiveness of ensemble learning [2]. Similarly, XGBoost and Gradient Boosting showed strong predictive 
capabilities, closely following Random Forest in performance metrics. The success of these boosting 
algorithms lies in their sequential tree-building process, where each subsequent tree aims to correct the 
errors of its predecessors. XGBoost's slightly better performance over traditional Gradient Boosting can be 
ascribed to its optimized implementation, which includes built-in regularization and advanced tree-
pruning strategies [2]. 
 
In contrast, linear models such as Bayesian Ridge and ElasticNet demonstrated moderate performance. 
While these models offer good interpretability and handle multicollinearity well, their relatively lower 
performance suggests the presence of non-linear relationships in our data that these models couldn't fully 
capture [3]. The Bayesian Ridge's probabilistic approach and ElasticNet's balanced regularization provided 
stable, albeit not outstanding, predictions. Support Vector Regression (SVR) with different kernels yielded 
mixed results. The linear kernel's performance indicates that simple linear relationships are insufficient to 
model our data accurately. The polynomial kernel's higher error rates suggest potential overfitting, 
highlighting the challenge of selecting an appropriate kernel and hyperparameters for SVR in complex 
datasets [4]. The K-Nearest Neighbors (KNN) algorithm showed competitive performance for a non-
parametric method but fell short of the ensemble methods. This outcome underscores KNN's limitations in 
handling high-dimensional data and its sensitivity to the local structure of the dataset [5]. Interestingly, the 
Stacking Ensemble, which combined predictions from multiple base models, demonstrated robust 
performance. This approach leverages the strengths of diverse algorithms, potentially capturing different 
aspects of the underlying data structure [6]. 
 
These findings emphasize the importance of model selection in regression tasks. The superior performance 
of ensemble methods, particularly Random Forest and boosting algorithms, suggests that our dataset 
contains complex, possibly non-linear relationships that these models are well-suited to capture. However, 
the computational cost and reduced interpretability of these complex models should be considered in 
practical applications. The findings from our machine learning model comparison provide valuable insights 
for educators and policymakers working in smart learning environments. The superior performance of 
models like Random Forest and XGBoost underscores the potential of leveraging learning analytics data for 
predicting student performance [1], [2]. This capability empowers educators and administrators to make 
well-informed, data-driven decisions regarding curriculum design, resource allocation, and targeted 
intervention strategies. The high accuracy of our predictive models enables early identification of at-risk 
students. This early warning system allows educators to implement timely interventions, potentially 
mitigating academic challenges before they escalate [4]. 
 
The complex interactions captured by ensemble methods such as Random Forest highlight the potential 
for creating personalized learning pathways. These models can guide the customization of educational 
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experiences to better meet individual student needs and learning styles. Insights into the factors that most 
significantly predict student success, as revealed by feature importance analysis in top-performing models, 
can inform the optimization of resource allocation [5]. Educational institutions can focus on enhancing 
specific aspects of the learning environment or investing in educational technologies that align with these 
key predictors. 
 
Policymakers can leverage these findings to develop evidence-based educational policies. For example, if 
institutional factors are identified as significant predictors, policies aimed at standardizing best practices 
across institutions could be prioritized. The effectiveness of sophisticated predictive models emphasizes 
the need for data literacy among educators. This finding supports the implementation of professional 
development programs focused on data interpretation and the application of predictive analytics in 
education [12]. 
 
While these predictive models offer substantial benefits, they also raise important ethical concerns 
regarding data privacy, potential biases, and the responsible use of predictive analytics in education. 
Policymakers must establish guidelines to ensure the ethical application of these technologies in 
educational settings. The success of our models in predicting short-term outcomes suggests the value of 
conducting longitudinal studies. Such studies could examine how early performance indicators predict 
long-term educational and career outcomes, thereby informing long-term educational strategies [10]. 
 
The high accuracy of ensemble methods supports the development of advanced adaptive learning systems 
[25]. These systems could utilize real-time data to adjust content difficulty, pacing, and learning activities, 
optimizing the learning experience for each student [26]. The robust performance of these models across 
various data subsets encourages increased data sharing and collaboration between educational 
institutions. Such collaboration could lead to more comprehensive and generalizable insights into factors 
affecting student success [11]. 
 
In conclusion, the predictive power of our machine learning models offers a valuable tool for enhancing 

educational outcomes. However, it is essential to balance the use of these technologies with ethical 

considerations and a holistic understanding of the learning process. Moving forward, the integration of 

these predictive models into educational practice should be approached thoughtfully, with ongoing 

evaluation of their impact and effectiveness in improving student outcomes. 

5. Conclusions 

This study presents a comprehensive evaluation of machine learning models for predicting student 

performance in smart learning environments, showcasing a range of strengths and limitations. By 

comparing diverse models such as Random Forest, Support Vector Regression, AdaBoost, Bayesian Ridge, 

K-Nearest Neighbors, ElasticNet, XGBoost, Gradient Boosting, and Stacking Ensemble, the research 

provides a thorough understanding of each model's capabilities in the educational context. Utilizing 

learning analytics data, the study generates valuable insights for data-driven decision-making in 

curriculum design and resource allocation. One key strength lies in the high accuracy of the models, 

particularly ensemble methods like Random Forest and XGBoost, which enable early identification of at-

risk students and allow for timely interventions. These models also show potential for creating 

personalized learning pathways, tailoring educational experiences to individual student needs. The robust 

cross-validation techniques employed ensure reliable performance metrics and assess the models' 

generalizability, adding credibility to the results. Feature importance analysis in top-performing models 

offers actionable insights for optimizing the learning environment. However, the study faces limitations 

related to data quality and availability, which may not be representative of all educational contexts, and the 

generalizability of the models to other settings remains uncertain. Ethical concerns regarding data privacy 

and potential biases are acknowledged but not fully addressed, and the interpretability of some complex 

ensemble methods could challenge educators and policymakers. The focus on short-term predictions 

without empirical evidence on the long-term impact of interventions and the computational resources 

required for training and validating multiple complex models also pose limitations. Effective feature 

engineering is crucial for model performance, which may not be easily replicable without domain expertise. 

While the study supports the development of adaptive learning systems, implementing such systems 
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requires significant technological investment, which may not be feasible for all institutions. In conclusion, 

this research provides valuable insights into the application of machine learning for predicting student 

performance, offering potential benefits for personalized learning and early intervention strategies. 

However, it underscores the need for careful consideration of data quality, ethical implications, model 

interpretability, and practical implementation challenges. Future research should explore more 

sophisticated hybrid models and advance feature engineering to further enhance predictive accuracy and 

robustness, incorporating diverse data sources and conducting longitudinal studies to examine the long-

term impact of early interventions and personalized learning paths, ultimately guiding the development of 

long-term strategies to support student success. 
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