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Abstract: Large language models (LLMs) often appear to vindicate a radical empiricist picture: train on vast
corpora of experience-like text, and capacities emerge without explicit symbolic rules. Yet contemporary
machine learning research repeatedly emphasizes that what is learned, how quickly it is learned, and how
well it generalizes depend crucially on prior constraints: architectural structure, training objectives,
optimization dynamics, and representational bottlenecks. These constraints constitute inductive biases in
a precise, technical sense. This paper develops a philosophical argument that uses LLMs as a case study to
reassess the classical tabula rasa thesis associated with Locke and its descendants. I defend two claims.
First, even the most “data-driven” generative models are saturated with structural priors that make learning
possible at scale; thus, their success cannot be straightforwardly read as a triumph of unstructured
empiricism. Second, once this is appreciated, the rhetorical appeal of a “blank slate" conception of the
infant mind weakens further: if artificial systems trained on orders of magnitude more linguistic input than
any child still require rich inductive biases, it is implausible that human cognition begins wholly
unstructured. I then show how contemporary debates about whether LLMs “understand” language
recapitulate the older dispute about whether experience alone can generate semantics and conceptual
structure. The upshot is a more balanced, non-caricatured empiricism: experience matters, but explanation

must explicitly account for the learning system's prior structure.
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1. Introduction

Generative Al has re-opened old philosophical questions in a new register. Large language models (LLMs)
trained on massive datasets produce fluent text, solve exam-style problems, write executable code, and

adapt to novel tasks via prompting. This empirical fact has been rhetorically mobilized in two opposite
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directions. One line of commentary treats LLMs as an existence proof for radical empiricism: give a
sufficiently flexible learner enough experience, and sophisticated cognition will "emerge" without
substantive innate structure. A second line instead sees LLMs as sophisticated engines of statistical mimicry
that cannot yield genuine understanding, thereby reaffirming the necessity of grounding, embodiment, or

inborn conceptual resources.

This paper aims to shift the terms of this debate by focusing on a technical point that tends to be obscured
when LLMs are treated as philosophical symbols. In machine learning, no learner is truly "blank." All
learning requires inductive bias, understood as a restriction on the hypothesis space or a preference
ordering over possible generalizations (Mitchell 1980). Indeed, modern learning theory contains formal
resultsincluding, but not limited to, the No Free Lunch theorems - that make some form of bias unavoidable
if generalization is to be possible (Wolpert and Macready 1997). Importantly, the inductive bias of
contemporary deep learning systems is not confined to explicit regularizers. It is distributed across
architecture, objective function, optimization procedure, tokenization, data curation, and interface-level
fine-tuning procedures such as reinforcement learning from human feedback (RLHF) (Ouyang et al. 2022).
The philosophical moral is not that LLMs are "innate" in any human sense, but that their empirical success

cannot be attributed to experience alone, conceived as undifferentiated input.

A further reason the "LLMs vindicate empiricism" line of thought is attractive is that contemporary
pretraining is often described as "self-supervised" and "taskagnostic." The model is not given explicit
instructions about grammar, semantics, or reasoning; it is trained to predict continuations of text, and
capabilities appear to scale with data and compute (Kaplan et al. 2020; Hoffmann et al. 2022). It is therefore
easy to slide from "no explicit supervision" to "no substantive prior structure." But this slide is precisely
what the present argument resists. "Task-agnostic" does not mean "bias-free." Even an apparently generic
objective (next-token prediction) embodies a determinate notion of success, and the machinery built to
optimize it encodes strong assumptions about what kinds of regularities are worth representing (Vaswani

etal. 2017; Lavie et al. 2024).

This paper also insists on a second clarification that is often neglected in philosophical discussion: the
"experience” of LLMs is not raw worldly contact but an engineered, curated, and filtered textual artifact.
Many modern training corpora are derived from large-scale web scrapes; their composition depends on
filtering choices, deduplication procedures, and blocklists, and these choices are known to have systematic
downstream effects (Dodge et al. 2021; Bender et al. 2021). In other words, even before we consider
architectural priors, what counts as the model's "input" is already shaped by a pipeline that embeds
normative and methodological commitments. This will matter when we later ask whether LLMs support an
experience-only picture of learning. If the "experience" itself is structured and selected, it cannot

straightforwardly serve as an analogue of an unstructured sensory stream.
The core thesis of the paper can be stated in the following conditional:

If even the most "data-driven" generative models cannot learn or generalize without strong structural

inductive biases, then portraying the human infant mind as an entirely unstructured blank slate is
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more a rhetorical victory than an explanatory one.

This thesis is not intended as a knockdown refutation of Locke. Historically sensitive scholarship already
emphasizes that Locke's anti-nativism is more nuanced than a cartoonish "mind as empty storage" picture
(Uzgalis 2001). The target is rather a strong tabula rasa ideology that treats learning as the mere
accumulation of experiential content, while downplaying, or effectively ignoring, the prior organization of
the learning system. My strategy is to use LLMs as a vivid contemporary case study to clarify why such a

view is explanatorily unstable.

Finally, it is worth specifying what sort of philosophical leverage LLMs can provide. The paper does not
assume that LLMs are good psychological models of human learners; nor does it claim that any specific
architectural feature in transformers corresponds to a biologically innate module. Instead, the paper uses
LLMs as a "stress test" for a family of empiricist slogans. If the most celebrated contemporary example of
large-scale, data-intensive learning nevertheless requires substantial prior structure, then the bare appeal

to "experience" cannot, by itself, discharge the explanatory burdens involved in accounting for cognition.

We proceed as follows. Section 2 reconstructs the tabula rasa theme and articulates the "Locke problem" as
a family of explanatory pressures: how can learners generalize far beyond the data available, acquire
structured concepts, and do so robustly across environments? Section 3 then introduces inductive bias as a
methodological constraint in both philosophy of mind and machine learning, arguing that any serious
empiricism must specify the learner's prior structure. Section 4 offers a detailed account of where inductive
bias lives in LLMs: transformer architecture, next-token prediction objectives, RLHF fine-tuning,
tokenization, data curation, and implicit regularization induced by optimization. Section 5 draws the central
philosophical lesson: LLMs do not instantiate radical empiricism; they instead illustrate how experience
and structure cooperate. Section 6 connects this lesson to the "do LLMs understand?" controversy, treating
it as a contemporary form of the older question whether semantics can be generated from form alone
(Bender and Koller 2020; Harnad 1990). Section 7 considers several objections and replies. Section 8
concludes with a constructive proposal: rather than choose between "blank slate" and "fully innate," we

should adopt an explicitly bias-aware empiricism that treats prior structure as part of the explanandum.

2. The Tabula Rasa Thesis and the Locke Problem

Locke famously rejects innate speculative principles and innate ideas. The metaphor of the mind as "white
paper” is offered to motivate a methodological demand: if we want to understand the origin and scope of
knowledge, we should trace the contents of thought to experience and reflect on the operations by which
the mind composes complex ideas from simpler ones (Locke 1975). This is often summarized-sometimes

misleadingly - as the doctrine that the human mind is a blank slate at birth. Two clarifications are crucial.

First, Locke's rejection of innateness is directed primarily at innate propositional contents or innate items
of knowledge. He is not committed to denying that the mind has powers, capacities, or structural features
that make experience usable. Indeed, even a minimal account of how experience yields ideas must
presuppose faculties of perception, attention, memory, abstraction, and comparison. Locke can plausibly be

read as relocating explanatory work away from innate ideas and toward the mind's operations on

https://reviewofconphil.com 19



experiential inputs (Uzgalis 2001). The extreme "blank slate" interpretation becomes most plausible only

when Locke's metaphor is detached from his broader theory of mental operations.

Second, and more important for the present argument, the philosophical debate that Locke helped shape
concerns not merely whether some contents are innate, but whether experience alone can explain the
emergence of rich cognitive structure. This is the pressure point sometimes called "the Locke problem" in
cognitive science and philosophy: how can finite, noisy, contingent experience support the acquisition of
abstract concepts, compositional structures, and far-reaching generalizations? The problem is not unique
to language acquisition, though language provides a paradigmatic case. Learners, including infants, appear
to possess expectations about objects, agency, number, and causality that guide learning in ways that are
difficult to derive from raw sensory input alone (Spelke 2000). More broadly, human cognition displays
what looks like structure-sensitive learning: people generalize in ways that respect hierarchical
organization, causal dependencies, and relational patterns, rather than merely correlational surface

regularities (Tenenbaum et al. 2011; Lake et al. 2017).

A historical bridge is instructive here. In mid-twentieth-century linguistics, Skinnerstyle behaviorism
proposed an experience-driven account of language as learned verbal behavior. Chomsky's influential
review argued that such an account fails to explain key properties of linguistic competence-in particular,
the systematicity, productivity, and rule-governed character of language (Chomsky 1959). Regardless of
how one evaluates the details, the review framed the dispute as an explanatory challenge for an empiricist
program: merely pointing to reinforcement histories and stimulus control is insufficient to account for the
structured nature of language. For present purposes, the important point is not to import Chomsky's
theoretical commitments into the LLM debate, but to note a recurrent dialectical pattern: in domains where
cognition exhibits strong structure and far-reaching generalization, appeals to "experience" without an

accompanying account of the learner's internal organization are explanatorily fragile.
It is helpful to distinguish three versions of the Locke problem, each more demanding than the last:

The Generalization Problem. How can a learner move from observed instances to unobserved cases
reliably? Even if experience provides a stock of examples, there are infinitely many possible hypotheses
consistent with any finite dataset. Without some preference ordering-some bias-the learner cannot justify
any particular "inductive leap"” (Mitchell 1980). In philosophical terms, this is a descendant of Humean

underdetermination: data alone does not determine theory.

The Structure Problem. How can learners acquire structured representations (e.g, compositional
concepts, hierarchical syntax, causal models) rather than merely flat associations? A representational
system must support operations such as variable binding, substitution, and systematic recombination if it
is to explain the productivity of thought and language. Here the explanatory pressure concerns not just

which generalization is chosen, but what the system can even represent and manipulate.

The Semantics Problem. How can symbols, words, or internal representations come to be about anything?
Even if statistical learning yields patterns of use, does it thereby yield meaning, or does meaning require

grounding in perception, action, and shared forms of life (Harnad 1990; Bisk et al. 2020)? This is the point
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at which empiricism intersects with debates about reference, intentionality, and the nature of conceptual

content.

These three problems are historically entangled. Classical empiricists hoped to solve them by appealing to
association, abstraction from experience, and the gradual construction of complex ideas. Nativists, in
contrast, argued that experience underdetermines the learned structure, motivating inborn constraints.
Contemporary cognitive science often rejects the stark dichotomy, emphasizing that learning is shaped by
both input and prior structure (Samet 2008; Tenenbaum et al. 2011). Crucially, the contemporary landscape
encourages a reframing: the central question is not "innate vs. learned" in a binary sense, but what kinds of

priors are required for learning to be tractable and robust in a given environment.

The contribution of generative Al to these debates is double-edged. On one hand, LLMs show that large-
scale statistical learning over linguistic data can produce impressive behavioral competence (Brown et al.
2020; OpenAl et al. 2023). On the other hand, close inspection reveals that this competence depends on
engineered structural constraints at every level. If so, then LLMs are not a straightforward model of radical
empiricism. Rather, they may function as an instructive analogue: they dramatize how far "experience" can

take a learner, given powerful inductive biases.
3. Inductive Bias as a Methodological Requirement

In machine learning, "inductive bias" is not a pejorative label for arbitrary prejudice; it is a necessary
condition for learning. Mitchell's classic formulation defines inductive bias as "any basis for choosing one
generalization over another, other than strict consistency with the training instances" (Mitchell 1980). This
conception generalizes readily to philosophy of mind. Any theory oflearning that claims to explain cognitive
competence by appealing to experience must specify what allows experience to be interpretable and

generalizable for the learner.

The No Free Lunch theorems sharpen this into a formal constraint: averaged over all possible objective
functions, no optimization algorithm outperforms any other; gains on one class of problems must be paid
for by losses on another (Wolpert and Macready 1997). Although the theorems are sometimes
overextended, the underlying message is robust: performance requires assumptions about the structure of
the environment. Philosophically, this is a structural analogue of Hume's problem of induction: if we refuse

to specify any bias, we cannot explain why inductive inference works as well as it does in the actual world.

To make the methodological point more precise, it helps to distinguish (at least) three ways inductive bias

enters a learning explanation.
3.1. Representational Bias, Search Bias, and Data-Selection Bias

First, there is representational bias: the set of hypotheses the learner can express. In classical learning
theory this is modeled as a hypothesis space H. If the true regularities of the environment are not well-
approximated within H, no amount of data will rescue performance. Architectural choices in deep learning

instantiate representational bias by defining the class of functions that are easy or hard to represent.

Second, there is search or procedural bias: even if multiple hypotheses in H fit the training data equally
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well, the learning procedure must select among them. This selection can be explicit (regularization terms,
early stopping) or implicit (optimization dynamics that prefer certain parameter configurations)
(Neyshabur et al. 2017; Soudry et al. 2018). Search bias matters because many modern learners are heavily
overparameterized: there can be many distinct solutions with near-zero training error, and yet

generalization differs widely among them (Zhang et al. 2017).

Third, there is data-selection bias: the distribution of experiences the learner receives is itself structured.
In human development this includes ecological regularities, social scaffolding, and pedagogical cues. In LLM
training it includes corpus construction, filtering, and deduplication pipelines (Dodge et al. 2021). Data-
selection bias is often misdescribed as "just the environment," but explanatorily it plays the same role as a
prior: it changes what the learner treats as typical or salient, and hence changes the generalizations it is

likely to form.

The present paper emphasizes that all three dimensions are active in LLMs and, plausibly, in human
learning. This is why bare appeals to "experience" are inadequate: experience is always received through a

representational and procedural filter, and it is always drawn from some distribution.
3.2. Bias as Constraint and Bias as Prior

Inductive bias can be modeled either as a constraint or as a probabilistic prior. In a constraint-based picture,
the learner rules out large regions of hypothesis space. In a Bayesian picture, the learner assigns a prior
probability P(h) over hypotheses h € H and updates by Bayes' rule given data D, producing a posterior
P(h | D). The Bayesian perspective has been influential in cognitive science precisely because it makes

explicit how learning depends jointly on priors and evidence (Tenenbaum et al. 2011).

For the purposes of the Locke problem, what matters is that both pictures reject a "no prior structure” view.
A purely uniform prior over an enormous hypothesis space is practically equivalent to having no guidance
at all; learning becomes sample-inefficient and unstable. Conversely, a structured prior can make learning
tractable by privileging hypotheses with certain forms (e.g., causal graphs, compositional structures,
smooth functions). The theoretical interest of LLMs is that, while they are not explicitly Bayesian learners
in the usual sense, many of their observed generalization behaviors can be understood as the consequence

of implicit priors induced by architecture and training objectives (Xie et al. 2021).
3.3. Why "Bias" is not an Ad Hoc Escape Hatch

A natural worry is that appeals to inductive bias could be used to immunize any theory from criticism:
whenever learning is hard, simply posit a stronger prior. The appropriate methodological response is to
treat inductive bias as part of what must be explained. In both cognitive science and machine learning, a
good bias is not an arbitrary stipulation; it is one that fits the structure of the target environment and yields
robust generalization under plausible data conditions (Goyal and Bengio 2022; Lake et al. 2017). Inductive
bias therefore functions as an explanatory commitment: once one specifies the bias, one is committed to a

certain pattern of successes and failures across tasks and environments.

This point will matter when we later compare LLMs and human learners. The claim is not simply "humans

https://reviewofconphil.com 22



must have some bias" (which is trivial), but that the kinds of rapid and robust generalization humans
display plausibly require rich structural priors. LLMs will be used as an argument by analogy, not to identify
the content of those priors, but to undermine the credibility of the idea that cognition begins wholly

unstructured.

4. Where Inductive Bias Lives in Large Language Models

This section provides a detailed account of the principal sources of inductive bias in contemporary LLMs.
The goal is not an engineering tutorial. Rather, it is to make explicit the layers of structure that must be
presupposed before "data-driven learning” can occur. For philosophical purposes, the important point is

that these biases are not optional decorations; they are conditions of learnability and generalization.
4.1. Architectural Bias: Transformers as Structured Hypothesis Spaces

The dominant architecture for LLMs is the transformer (Vaswani et al. 2017). At a high level, a transformer
is a parameterized function that maps sequences of discrete tokens to probability distributions over the

next token. But this description hides architectural commitments.

First, the transformer treats language as a sequence and builds representations via self-attention. Self-
attention implements a content-addressable mechanism: each token can weight information from other
tokens, subject to learned queries and keys. This provides a bias toward representing relations among
tokens rather than only local features, and it enables long-range dependencies to be integrated in parallel.
In effect, the architecture assumes that what matters for prediction is the pattern of interactions among

elements in a context window, and it provides a computational primitive tailored to that assumption.

Second, transformers are permutation-sensitive only via positional encodings. Without positional
information, self-attention is permutation invariant. The need to add positional encodings means that the
architecture embodies an explicit decision about what kind of sequence structure is relevant. Recent
theoretical work argues that, even in certain limits, transformers can exhibit biases toward permutation-
symmetric functions in sequence space, and that learnability depends systematically on context length and
symmetry properties (Lavie et al. 2024). The philosophical point is not the specific asymptotic regime, but

that "architecture"” is a substantive constraint on what functions are representable and easily learnable.

Third, transformers are deep compositional systems. Layering attention and feedforward modules yields a
hierarchy of representations. This depth introduces a bias toward multi-stage feature extraction: earlier
layers can capture local statistical patterns, while later layers can aggregate and abstract. Such hierarchies
are not entailed by experience; they are a design choice that creates the possibility of representing abstract

regularities as iterated compositions of simpler computations.

Finally, transformer design inherits and amplifies a broader family of "relational” inductive biases. Self-
attention can be interpreted as implementing a learned, soft form of message passing among token
representations. This connects it to a wider literature on relational inductive biases in deep learning
(Battaglia et al. 2018; Bronstein et al. 2021). The relevance to the Locke problem is that relational inductive

bias provides a principled way to represent structure that is not reducible to local co-occurrence. Even if
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the model is trained on raw text, its architecture makes certain relational abstractions easier to discover

and exploit than they would be in a generic function approximator.
4.2. Objective Bias: Next-Token Prediction and Its Consequences

LLMs are typically trained with an autoregressive objective: maximize the likelihood of the next token given
preceding tokens. GPT-style models exemplify this approach (Brown et al. 2020). Such training has often
been treated as the epitome of data-driven learning: no task-specific labels, only a generic prediction
objective. Yet the objective encodes a substantive bias: it treats linguistic competence as whatever is useful

for predicting continuations in text.
This matters in at least three ways.

First, next-token prediction privileges distributional form. To the extent that semantic regularities manifest
in patterns of co-occurrence, the objective can internalize them. But the objective is indifferent to truth,
grounding, and reference except insofar as these affect token statistics. As a result, the model can become
an excellent predictor of text without thereby becoming a reliable guide to the world. This underwrites
concerns that LLMs may generate plausible but false outputs, a point that motivates alignment procedures

such as RLHF (Ouyang et al. 2022).

Second, the objective encourages compressive abstraction. Predicting text well requires capturing long-
range dependencies and latent topics. This creates pressure to infer hidden variables that explain
document-level coherence, which can in turn support in-context learning behaviors. Theoretical work
makes this connection precise in stylized settings by showing how in-context learning can emerge as a kind
of implicit Bayesian inference over latent document concepts (Xie et al. 2021). On a philosophical reading,
the model is not simply memorizing strings; it is pressured to construct internal states that act like

"hypotheses" about what is going on in the text.

Third, next-token prediction induces a distinctive notion of generalization. Generalization is evaluated by
perplexity or log-likelihood on held-out text, not by grounded performance in sensorimotor environments.
This constrains what success means. Philosophically, it implies that any inference from LLM success to
human cognition must be careful: the model optimizes for linguistic continuation, whereas humans use
language for communication embedded in action and shared practices. One can therefore regard LLM
training as a highly specialized form of empiricism: empiricism about textual regularities under a particular

success criterion.
4.3. Alignment and Fine-Tuning Bias: RLHF as Normative Structure

A further layer of bias enters through fine-tuning and alignment procedures, especially RLHF (Ouyang et al.
2022). RLHF begins with supervised fine-tuning on demonstrations, then trains a reward model from

human preference rankings, and finally performs reinforcement learning to optimize for higher reward.
Two philosophical observations follow.

First, RLHF makes explicit that "learning from data" is not value-neutral. It injects human normative
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judgments about helpfulness, harmlessness, and instructionfollowing into the model's objective landscape.
Thus, the model is not merely fitting linguistic statistics; it is being shaped to satisfy human evaluative
standards. This undermines simplistic empiricist narratives that treat LLMs as passive mirrors of textual
experience. Even if the pretraining phase is framed as passive absorption, RLHF explicitly reorients the

system toward interactive norms of inquiry and conversation.

Second, RLHF illustrates how biases can be layered: the base model's inductive bias is already substantial,
but alignment adds another bias toward conversational cooperation, deference to user intent, and socially
acceptable discourse. These biases are not reducible to the raw pretraining corpus. They are engineered
constraints that change what the model is likely to say, and, crucially, what kinds of generalizations it will
manifest in interactive settings. In many practical deployments, users primarily encounter RLHF-shaped
behavior; therefore, philosophical claims about "what LLMs are like" should be cautious about attributing

properties to pretraining alone.
4.4. Optimization Bias: Implicit Regularization and the Geometry of Generalization

Even holding architecture and objective fixed, training dynamics matter. Deep learning models generalize
well despite being massively overparameterized, a fact that has motivated extensive investigation into
implicit regularization: optimization procedures can bias solutions toward certain function classes even
without explicit penalties (Neyshabur et al. 2017; Zhang et al. 2017). In simpler settings, gradient descent
can be shown to converge to max-margin solutions, demonstrating that the training algorithm selects

among many zero-training-error solutions according to implicit preferences (Soudry et al. 2018).

For our purposes, the lesson is straightforward: the trained model is not merely the result of "data plus
architecture." It is also shaped by a training process that systematically prefers some representations over
others. Thus, the empiricist picture of learning as imprinting from experience is incomplete unless it
includes the dynamics by which experience is integrated. In philosophy-of-science terms, the optimization
process is part of the inferential "method" of the learner; it functions as a constraint on what hypotheses

are effectively reachable.
4.5. Representational Bottlenecks: Tokenization as a Prior over Linguistic Structure

Tokenization is often treated as a preprocessing detail, yet it imposes a representational bias by
determining the atomic units the model can manipulate. Subword tokenization methods, such as byte pair
encoding approaches (Sennrich et al. 2016) and related tokenizers (Kudo and Richardson 2018), reflect an
assumption about linguistic structure: words can be decomposed into reusable subunits that capture
morphology, frequent character sequences, or other regularities. This design increases learnability by
enabling the model to share parameters across related word forms and handle open-vocabulary

phenomena.

Philosophically, tokenization is a clear example of "structure before experience." The learner does not
encounter raw text as an unstructured stream; it is given a segmentation scheme that defines what counts

as a symbol-like unit. This should caution against taking LLM performance as evidence that purely
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unstructured exposure can yield high-level competence. Indeed, one might say that tokenization plays a
role analogous to perceptual segmentation in human cognition: it determines what the system treats as the

"parts” over which it can learn systematic relations.
4.6. Data and Corpus Construction: The Model's "Experience" is Curated

So far, we have treated "data" as if it were simply given. But in practice, LLM pretraining depends on large-
scale corpora whose construction embodies substantial methodological and normative choices. For
example, the widely used C4 dataset was created by filtering Common Crawl, and later analysis documented
that this filtering changes corpus composition in non-trivial ways (Dodge et al. 2021). The Pile was explicitly
constructed as a diverse mixture of subcorpora, motivated by the hypothesis that diversity improves
generalization (Gao et al. 2020). Such corpus design decisions are not merely practical conveniences; they
materially influence what generalizations the model can form, and they therefore function as a form of

inductive bias.

Two points deserve emphasis. First, corpus construction affects what the model treats as typical linguistic
practice. If certain registers, genres, or communities are overrepresented or filtered out, then the model's
learned distribution will inherit these imbalances. Second, curation decisions can encode normative
commitments. Dodge et al. report that blocklist filtering in C4 disproportionately removes text from and
about minority identities (Dodge et al. 2021). This is a concrete mechanism by which "the data" embeds
social and political structure. Philosophically, this reinforces the idea that the LLM's "experience" is not an
unstructured given but a filtered artifact, and it complicates any attempt to use LLMs as exemplars of raw

empiricism.

There is also a methodological lesson for debates about tabula rasa. If someone claims that LLMs show how
a system can become competent purely by exposure, we should ask: exposure to what, under what curation
regime, and with what implicit structure in the distribution of examples? Once these questions are taken
seriously, the romantic picture of an agent passively absorbing undifferentiated experience becomes harder

to sustain.
4.7. Mechanistic Bias: In-Context Learning and Algorithmic Circuits

Perhaps the most philosophically suggestive LLM capability is in-context learning: the ability to adapt
behavior based on examples in the prompt without parameter updates. Mechanistic interpretability
research suggests that certain attention heads implement algorithm-like behaviors, such as "induction
heads" that complete repeated token patterns (Olsson et al. 2022). Such results are preliminary and model-
dependent, but they support a general point: the transformer architecture makes certain computations easy
to implement. In-context learning is not a miracle of data alone; it is enabled by structural affordances of

attention and by training conditions that reward exploiting those affordances (Xie et al. 2021).

Recent theoretical and empirical work goes further, suggesting that in-context learning can implement
recognizable learning algorithms in the model's forward pass. Garg et al. show that transformers can be

trained to perform in-context learning for simple function classes, including linear functions, with
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performance comparable to taskspecific estimators (Garg et al. 2022). Akyurek et al. provide evidence that,
at least in linear settings, in-context learners can approximate gradient descent, ridge regression, or least-
squares predictors, with transitions between these behaviors depending on model depth and data
conditions (Akyurek et al. 2022). Von Oswald et al. strengthen the mechanistic connection by constructing
equivalences between self-attention transformations and gradient-descent-like updates, and by
experimentally identifying similarities between transformer behavior and optimization in stylized

regression tasks (Oswald et al. 2023).

These results matter for the Locke problem because they show that "learning from examples" can be
partially internalized as computation within the model-but only because the architecture supports such
internalization. In-context learning is therefore a paradigmatic case of bias-driven learnability: the model
can behave as if it were performing a form of inference over the prompt because the computational

substrate (attention over sequences) makes that form of inference readily expressible and trainable.

In sum, LLMs display a layered hierarchy of inductive biases. Architecture defines representational and
computational primitives; objectives define what counts as success; optimization dynamics select among
solutions; tokenization constrains symbolic units; data curation shapes the distribution of "experience";
alignment procedures introduce normative preferences; and mechanistic circuits exploit architectural
affordances. The existence of these biases does not diminish the remarkable role of scale and data (Kaplan
etal. 2020; Hoffmann et al. 2022). But it does imply that LLM success cannot be interpreted as a vindication

of an experience-only theory of learning.
5. Reassessing Empiricism: Lessons and Limits from LLMs

With the foregoing in view, we can articulate the central philosophical moral. LLMs do not instantiate
radical empiricism. Rather, they show that large-scale learning requires a cooperation between (i) massive

exposure to structured input and (ii) prior constraints that render that input learnable and generalizable.
5.1. Why "Scale Alone" Does Not Eliminate Bias

A tempting reply to the emphasis on inductive bias is to concede that biases exist but insist that, at
sufficiently large scale, the biases become negligible. On this view, the role of bias is merely to get learning

started; the real explanatory work is done by data and compute.

This reply misconstrues how inductive bias functions. Bias is not an additive booster that can be dialed
down as data grows. It is a constitutive feature of the learning system, shaping what it can represent and
what it will converge to, at all scales. Scaling laws show that performance improves predictably with model
size, data, and compute (Kaplan et al. 2020), and subsequent work shows that data-model tradeoffs matter
for compute-optimal training (Hoffmann et al. 2022). But these results do not imply that architecture and
optimization are irrelevant; rather, they hold under fixed modeling choices. Scaling thus describes how

performance changes within a biased hypothesis space, not how learning becomes unbiased.

Indeed, the very existence of stable scaling laws suggests that the learning problem has exploitable

structure and that the model class is well-matched to it. If the bias were negligible, we would not expect
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consistent, systematic improvements under scaling within a particular architecture family. In philosophy-
of-science terms, the stability of scaling is evidence that the method is well-calibrated to the domain;

methods are never domain-neutral in a way that would support strong tabula rasa rhetoric.
5.2. The Bitter Lesson and the Misreading of Generality

A related but distinct line of thought is encapsulated in Sutton's "bitter lesson": across the history of Al,
general methods that leverage computation tend to outperform approaches that bake in extensive domain-
specific structure (Sutton 2019). This lesson is sometimes invoked to support a strong empiricist stance: if
general methods win, then perhaps cognitive competence arises from generic learning plus lots of data, not

from rich priors.

The present paper endorses part of Sutton's methodological attitude while rejecting the empiricist
overextension. The bitter lesson is most plausibly read as a warning against narrow, brittle, human-coded
domain knowledge that fails to scale. But it does not follow that scalable methods have no inductive bias.
On the contrary, what makes a method "general” in practice is often that it embodies broad structural priors
(e.g., compositionality, relational processing, smoothness, invariances) that apply across many tasks (Goyal
and Bengio 2022; Battaglia et al. 2018). In that sense, the bitter lesson is compatible with the thesis of this
paper: successful learning requires bias, but the most valuable biases are those that are powerful, reusable,

and aligned with deep regularities of the environment.

This distinction matters for Locke. A strong blank-slate ideology treats any mention of prior structure as a
retreat from empiricism. But the machine-learning notion of inductive bias shows that the relevant contrast

is not bias vs. no bias; it is which biases, at what level of generality, and with what empirical consequences.
5.3. From LLMs to Human Cognition: An Inference to the Best Explanation

How does this bear on the tabula rasa thesis? The argument is not that human minds are "transformers" or
that architectural priors in machines correspond one-to-one with innate structures in humans. The

argument is instead an inference to the best explanation under comparative constraints.

Consider the following asymmetry. Human children acquire language and broad world knowledge with far
less linguistic input than LLMs, and they do so in ways tightly integrated with perception, action, and social
interaction. LLMs, by contrast, are trained on enormous corpora and still require substantial engineered
inductive biases to generalize well and to behave coherently in interactive contexts. If a system with
dramatically more "experience" still depends on rich prior structure, it is implausible that a system with
dramatically less experience could succeed with less structure, unless we posit compensating forms of

inductive bias in the human case.

This inference should be handled carefully. One might object that human "experience" is multimodal and
temporally dense, and that the total information available to a developing child is not directly comparable
to token counts in a text corpus. This is correct, and it is one reason the paper does not attempt any crude
numerical comparison between "tokens seen" and "words heard." However, the point remains that human

learning is not merely data-rich; it is structure-rich. Caregivers scaffold attention, provide feedback, and
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embed language in joint action. Such scaffolding itself constitutes a form of inductive bias at the level of the
learning environment. Once again, we see that learning explanations must include prior structure

somewhere: either in the learner, in the environment, or (most plausibly) in their interaction.

In cognitive science, the classic point is not that concepts are innate as explicit propositions, but that
learning is guided by expectations about what kinds of hypotheses are plausible. Core knowledge proposals,
for instance, treat infants as having domain-specific expectations about objects and agents that guide
learning (Spelke 2000). Bayesian models of cognition similarly emphasize thatlearners bring priors to data,
and that those priors may reflect evolved structure or learned biases acquired early in development
(Tenenbaum et al. 2011). The LLM case supports this general methodological stance: explanation must
include prior structure. Once this is accepted, the strong blank-slate rhetoric loses explanatory force. It can
still be true that experience is indispensable and that many specific beliefs are acquired. But it is not
explanatory to say that experience alone yields cognitive structure, unless one specifies how the learner's

architecture makes such extraction possible.
5.4. A More Plausible Empiricism: Bias-Aware, Not Bias-Denying

If the target is a strong tabula rasa ideology, what replaces it? I propose what might be called bias-aware

empiricism. It has three commitments:

(1) Experience is necessary for most specific knowledge and for calibrating cognition to local

environments.

(2) Learning requires prior constraints that make some generalizations easier than others; these

constraints can be innate, developmental, or culturally scaffolded.

(3) The explanatory task is to identify the interaction between input and constraints, rather than to

celebrate one factor while erasing the other.

This view is compatible with a nuanced reading of Locke. Locke's emphasis on experience as the source of
ideas need not imply that the mind is computationally unstructured. But it is incompatible with the stronger
claim that humans begin cognitively unstructured and that all structure is written in by experience. The
LLM case, precisely because it is sometimes treated as the purest instance of data-driven learning, helps to

expose that stronger claim as a rhetorical simplification.

6. Does the Model "Understand"? LLM Controversies as Contemporary Locke
Problems

The debate over whether LLMs understand language is often treated as novel. In fact, it can be seen as a
contemporary expression of the semantics problem within the Locke problem family: can meaning and

conceptual structure arise from experience with linguistic form alone?
6.1. Meaning from Form? The Bender-Koller Challenge

A prominent critique argues that training on form alone cannot yield meaning. Bender and Koller

distinguish linguistic form from communicative intent and argue that systems trained only on form cannot,
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by that fact alone, acquire the relation between expressions and speakers' intended meanings (Bender and
Koller 2020). The critique does not deny that LLMs can be useful or impressive; it challenges an inference

from behavioral fluency to human-like understanding.

This critique aligns with older concerns about symbol grounding. A purely formal system may manipulate
symbols according to syntactic rules without thereby achieving intrinsic semantics (Harnad 1990). Searle's
Chinese Room thought experiment similarly aims to show that syntactic manipulation, even if it produces
correct outputs, need not constitute understanding (Searle 1980). While Searle's argument is controversial,
the underlying question is relevant: what is required for linguistic competence to count as semantic

competence?
6.2. Grounding and Shared Experience

Bisk and colleagues argue that language understanding research is hampered by a failure to relate language
to the physical and social world. They emphasize that successful communication relies on shared
experience of the world, and that text-only training may be insufficient for deeper forms of understanding
(Bisk et al. 2020). This connects the LLM debate to a broader empiricist-nativist discussion: experience
matters, but the relevant experience may not be reducible to exposure to text. Human language acquisition
is embedded in perceptual and social contexts, suggesting that semantics may require forms of interaction

that LLMs lack.

The present paper adds a complementary observation: even if we bracket grounding worries, LLM
competence is not a simple product of exposure to text. It depends on the biases identified in Section 4.
Thus, the contemporary semantics debate should not be framed as "text-only experience yields everything"
versus "text-only experience yields nothing." A more illuminating framing is: given a particular architecture
and objective, what kinds of semantic-like structure can be learned from textual distributional information,
and what kinds plausibly require broader forms of coupling to the world? This framing is continuous with

the Locke problem: it treats meaning as a target for explanation, not as a label to be bestowed or withheld.
6.3. Anthropomorphism, "As-If" Psychology, and the Lure of Understanding Talk

A further complication is the tendency to anthropomorphize. As Shanahan argues, the more fluent and
conversational LLMs become, the easier it is to slip into talk of the system as knowing, believing, or
understanding (Shanahan 2022). This tendency is not merely rhetorical; it can shape the explanatory
standards we implicitly apply. If we treat conversational smoothness as evidence of genuine mentality, we
may overlook the extent to which that smoothness is a product of alignment and interface-level finetuning
(Ouyang et al. 2022). Conversely, if we insist that only grounded, embodied agents can understand, we may
underappreciate the sophistication of the inferential structures that large-scale training can produce within

language.

Bias-aware empiricism suggests a cautious middle path. One can acknowledge that LLMs exhibit impressive
competences-including forms of abstraction, analogy, and in-context adaptation (Garg et al. 2022; Akytrek

et al. 2022) -while remaining noncommittal about whether these competences amount to full-blown
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understanding. Philosophically, this resembles an "as-if" stance: LLMs can behave as if they had beliefs and
reasons in constrained interactional contexts, because their learned internal structures support patterns of
inference that track many human expectations. But to move from "as-if" to "is" would require a more
substantive account of grounding, reference, and participation in social practices (Harnad 1990; Bisk et al.

2020).
6.4 The Counterpressure: Emergent Competence and the Temptation of Empiricism

On the other side, researchers have documented striking emergent capabilities in large models. Work on
GPT-3 emphasizes few-shot learning from prompts (Brown et al. 2020), and the GPT-4 report describes
broad performance across benchmarks (OpenAl et al. 2023). Bubeck and collaborators argue that early
versions of GPT-4 display a constellation of capabilities that invite renewed discussion of general
intelligence (Bubeck et al. 2023). Such results encourage the thought that semantics, concepts, and

reasoning may emerge from large-scale pattern learning.

How should we adjudicate this? The present paper does not attempt to settle the metaphysics of
understanding. Instead, it offers a diagnostic: the debate mirrors the tension between (i) the thought that
experience with linguistic patterns might suffice to generate cognitive structure, and (ii) the thought that
something beyond such experience is required for meaning. Importantly, the inductive bias analysis

complicates both sides.

For the skeptic, the existence of strong inductive biases in LLMs supports the claim that model competence
is not merely an accumulation of text experience. The model's behavior is produced by a structured
architecture optimized for prediction. Thus, even if the model lacks grounding, its outputs may reflect
sophisticated internal structure, not mere parroting. At the same time, for the enthusiast, the presence of
strong biases undermines a simplistic empiricist reading of emergence: capabilities arise not from data

alone, but from the interaction of data with architectural and objective constraints.
6.5. A Middle Position: Semantic Competence as an Achievement of Structured Learning in Context

A plausible middle position is that semantic competence is not an all-or-nothing property but a cluster of
abilities that can be partially instantiated. LLMs may exhibit robust inferential and pragmatic competencies
within linguistic contexts while lacking full grounded reference. This resembles how some empiricist
accounts treat concepts as patterns of use and inference rather than as intrinsically referential mental
atoms. Yet even on this middle position, inductive bias remains central: the model's inferential abilities
depend on prior structure, and human understanding likely depends on even richer structure, given

humans' integration of language with perception and action.

In this sense, the LLM understanding debate functions as a contemporary Locke problem: can experience
with linguistic form yield semantics and concepts, and if so, under what structural constraints? The lesson
is not a return to crude nativism, but a rejection of the idea that experience alone, conceived as

undifferentiated input, can do the explanatory work.

7. Objections and Replies
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7.1. Objection 1: Inductive Bias in LLMs Is Trivial Compared to Data

One might argue that the biases identified above are minimal and generic. Transformers, next-token
prediction, and gradient descent are not domain-specific, so the model is still fundamentally an empiricist

learner: the real content comes from data.

Reply. The objection conflates domain-specificity with explanatory significance. A bias can be highly
general and still be crucial. Mitchell's point is precisely that any nontrivial generalization requires bias,
whether or not that bias is tailored to a specific domain (Mitchell 1980). Moreover, the transformer
architecture is not content-free: it embodies assumptions about sequence processing, relational integration
via attention, and hierarchical composition (Vaswani et al. 2017; Battaglia et al. 2018). Tokenization
embodies assumptions about subword structure (Sennrich et al. 2016; Kudo and Richardson 2018).
Optimization embodies preferences among solutions (Soudry et al. 2018). These are not trivial in the sense

relevant to explanation; they shape what is learnable and how.

Finally, appeals to scaling laws do not support the claim that bias is negligible. Scaling laws describe how
performance improves under increasing resources within a fixed class of biased learners (Kaplan etal. 2020;
Hoffmann et al. 2022). They do not show that the learner becomes unbiased. If anything, the stability of

scaling suggests that the biases are well-matched to the structure of language data.
7.2. Objection 2: The Human Case Is Not Analogous; Biology Is Different

A critic may grant that LLMs have inductive biases while insisting that this has little relevance to the human
mind. Human learning occurs in embodied agents with evolved neural circuitry, motivations, and social
interactions. Therefore, the need for engineered biases in artificial systems does not imply anything about

innateness or structure in humans.

Reply. The argument does not depend on a tight analogy between transformers and brains. It depends on
a comparative constraint: if learning is possible at all, some form of inductive bias is necessary. The human
case must therefore involve bias, whether evolved, developmental, or socially scaffolded. The LLM case is
relevant because it is often claimed to be a paradigm of "experience-only" learning; showing that even this

paradigm depends on rich priors undercuts the plausibility of experience-only explanations more generally.

Moreover, cognitive science provides independent evidence that humans bring structured expectations to
learning (Spelke 2000; Tenenbaum et al. 2011; Lake et al. 2017). The LLM analysis complements this
evidence by providing a mechanistic demonstration of how far experience can go given architectural
constraints. If anything, the embodied and social richness of human development suggests the presence of
additional constraints that LLMs lack, strengthening the conclusion that a strong blank-slate picture is

implausible.
7.3. Objection 3: Locke Was Not a "Strong Blank Slate” Thinker

A historically informed objection is that the paper attacks a strawman. Locke's antinativism is nuanced, and
he does not deny mental powers and operations. Therefore, the argument does not refute Locke but only a

vulgarized ideology.
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Reply. This objection is largely correct as a point of intellectual history. The target is indeed a strong tabula
rasa ideology rather than Locke's most sophisticated position. However, the point is not merely exegetical.
Locke's metaphors have played a major role in shaping popular and sometimes academic rhetoric about
human malleability. The philosophical task is to assess the explanatory adequacy of that rhetoric. LLMs
provide a timely case study showing that even in engineered systems, successful learning requires
substantial prior structure. This supports a more accurate and fruitful reading of empiricism: anti-nativism
about propositional content can be combined with serious attention to prior structure. In that sense, the

argument can be read as rehabilitating a nuanced empiricism rather than rejecting it.
7.4. Objection 4: Inductive Bias Is Compatible with Tabula Rasa

One might argue that the tabula rasa thesis never meant "no structure whatsoever." It meant only "no innate

ideas." If so, then the existence of inductive biases in LLMs is irrelevant: biases are not innate ideas.

Reply. Two points. First, if tabula rasa is interpreted so weakly that it allows substantial innate structural
constraints, then it becomes compatible with bias-aware empiricism and ceases to support the strong
"blank slate" rhetoric. My argument presses precisely on this: once bias is acknowledged as essential, the
slogan "blank slate" loses its explanatory bite and must be replaced by an explicit account of what the

learner contributes.

Second, the semantics problem shows why structure matters. Even if we deny innate propositional content,
we still need to explain how concepts, reference, and understanding arise. The LLM debate makes this vivid:
text-only learning can yield impressive competence, yet questions remain about grounding and meaning
(Bender and Koller 2020; Bisk et al. 2020; Harnad 1990). To address these questions, we need theories that
specify not only input but also the system's structural capacities to connect input to the world. A purely

negative thesis about "no innate ideas" is insufficient for explanation.
7.5. Objection 5: "The Bitter Lesson” Undermines the Paper's Moral

A final objection appeals directly to Sutton. If the bitter lesson is that scalable general methods dominate,
then emphasizing inductive bias risks encouraging the wrong research program: building more structure
into systems rather than leveraging computation and data (Sutton 2019). The present paper, on this view,

confuses "bias" with brittle hand-engineering and therefore draws the wrong lesson.

Reply. The objection is helpful because it highlights an ambiguity in how "structure" is discussed. The paper
does not recommend adding narrow, domainspecific rules to LLMs. Instead, it argues that successful
learning already depends on structural priors-including broad, reusable biases such as relational
processing and compositional representation (Battaglia et al. 2018; Bronstein et al. 2021). A biasaware
empiricism is compatible with the bitter lesson precisely because it distinguishes between (i) ad hoc

domain knowledge that fails to scale and (ii) general inductive biases that make scaling effective.

Indeed, the historical moral Sutton draws is not "no structure,” but "structure that scales." From this
perspective, acknowledging inductive bias is not a deviation from generality; it is a necessary step in

explaining why general methods work in the first place. The paper's claim is therefore not in tension with
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the bitter lesson but supplies a philosophical interpretation of it: general methods succeed because their
inductive biases align with deep regularities in the environment, and those biases remain indispensable

even as data increases.
8. Conclusion

LLMs have often been treated as icons in a renewed empiricism-versus-nativism dispute. Their apparent
"learning from text alone" is taken by some to vindicate radical empiricism, and by others to expose the
hollowness of ungrounded pattern matching. This paper has argued that both readings risk missing the
most instructive lesson. Contemporary machine learning makes clear that no successful learner is a blank
slate: inductive bias is necessary for generalization (Mitchell 1980; Wolpert and Macready 1997). LLMs,
despite their data-driven appearance, incorporate strong biases distributed across architecture (Vaswani
etal. 2017; Lavie et al. 2024), objective functions (Brown et al. 2020), alignment procedures (Ouyang et al.
2022), optimization dynamics (Neyshabur et al. 2017; Soudry et al. 2018), representational bottlenecks
such as tokenization (Sennrich et al. 2016; Kudo and Richardson 2018), and even corpus construction
choices that shape what counts as "experience” (Dodge et al. 2021; Gao et al. 2020). These biases are not
incidental; they shape learnability and generalization at every scale (Kaplan et al. 2020; Hoffmann et al.

2022).

Once this is appreciated, the rhetorical force of a strong tabula rasa picture diminishes. If even the most
"data-driven" generative models require substantial structural priors to learn from enormous corpora, then
treating human infants as wholly unstructured learners becomes less plausible still. This does not entail a
crude nativism about innate propositional content. Rather, it motivates a more methodologically
responsible empiricism: experience is indispensable, but explanation must explicitly theorize the learner's
prior structure and its interaction with input. Seen in this light, the current "LLMs understand or not"
controversy is not an isolated quarrel; it is a new iteration of the old question whether semantic and
conceptual structure can be generated from experience with form alone (Bender and Koller 2020; Harnad
1990; Bisk et al. 2020). The correct response is neither to declare victory for empiricism nor to retreat to
slogans about innateness, but to adopt bias-aware explanations that treat structure as an indispensable

part of the cognitive story.
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