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Abstract 

The incorporation of genomics and precision medicine has paved the way for a new landscape in oncology 

research where extremely personalized therapeutic approaches are now capable of being designed 

depending on the genetic and phenotypic characteristics of patients. Radiogenomics, an evolving new 

science, is the combination of radiological imaging and genomic information that provides a non-invasive 

view into the molecular underpinnings of tumor biology. This paper presents a comprehensive overview of 

radiogenomics, tracing its origins from traditional radiology, describing its methods, and evaluating its 

breakthrough applications in cancer therapy. Through the application of quantitative imaging features—

tumor shape, texture, and metabolic activity—and associating them with genomic signatures, 

radiogenomics enhances cancer diagnosis sensitivity, enhances prognostic assessment, and optimizes 

treatment planning. We present the end-to-end radiogenomics process from image acquisition and feature 

extraction to building predictive models and emphasize its translational relevance to numerous cancer 

types, such as lung, breast, and brain cancers. Aside from its promise, radiogenomics is also encumbered 

by difficulties such as the need for standard protocols, lack of data, and difficulty in combining multi-omics 

datasets. This article outperforms these difficulties and proposes future directions, such as the integration 
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of artificial intelligence and multi-center efforts to drive the clinical translation of radiogenomics and 

anchor it in precision oncology. 
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1. Introduction 

The incorporation of precision medicine into cancer provides an unprecedented seismic shift in cancer 

therapy as it incorporates the specific genetic and phenotypic characteristics of a single patient. While prior 

therapies used similar treatment protocols across broad populations of patients, precision medicine 

provides a "one-size-fits-one" approach of using vast amounts of presented genotypic and phenotypic 

patient data, enabling clinicians to develop methods of achieving maximum benefit and eliciting the least 

amount of unnecessary side effects (Collins & Varmus, 2015). This most recent transitional phase was 

precipitated by rapid advances in genomic technologies, which allow clinicians to identify specific 

molecular alterations—genetic mutations, epigenetic modifications, and environmental exposures—that 

create a patient's signature for their cancer (Smith et al., 2020). In oncology, where cancer appears as an 

extremely heterogeneous disease with rich molecular dynamics, this patient-oriented practice is 

particularly revolutionary. 

Cancer is a heterogeneous disease arising from a multitude of genetic and epigenetic alterations. For 

example, genetic mutations can be classified as nucleotide substitutions, insertions, deletions, and 

chromosomal rearrangements, and they stimulate oncogenes or silence tumor suppressors, causing 

uncontrolled growth (Hanahan & Weinberg, 2011). In turn, epigenetic modifications impact gene 

expression through DNA methylation, histone modifications, and changes in the expression of non-coding 

RNA and thus play a role in oncogenesis (Jones & Baylin, 2019).  Traditional diagnostic methods, such as 

tissue biopsies and pathology, have allowed for the detection and functional analysis of either molecular 

driver as we know them today. However, there are significant limitations to these traditional approaches: 

they are invasive, do not provide an accurate state of the heterogeneity of the tumor in time and space, and 

are not suitable for serial assessment of disease progression or response to treatment (Gerlinger et al., 

2018). These constraints underscore the value of novel, non-invasive technology that addresses the goals 

of precision medicine. 

2. Radiogenomics 

Radiogenomics is an innovative meeting point between radiology and genomics, offering a non-invasive 

means to untangle the molecular characteristics of tumors by using imaging data. By extracting quantitative 

imaging features from clinical imaging modalities such as CT, MRI, and PET and associating them with 

genomic profiles through radiogenomics, they create a dynamic, integrated image of tumor biology (Lambin 

et al., 2017). This overlap transforms imaging from a fixed diagnostic tool to a powerful vehicle for the 

detection of biomarkers that can enhance cancer diagnosis, predict prognosis, and guide individualized 

therapy (Gillies et al., 2016). 

The power of radiogenomics is that it has the ability to link measurable tumor phenotypes—shape, texture, 

and metabolic rates—to intrinsic genetic signatures without reliance on invasive procedures. For instance, 

irregular tumor margins or heterogeneous textures on imaging may be linked with specific mutations, those 

in the EGFR or KRAS genes, and provide actionable insights into potential therapeutic response (Aerts et 

al., 2014). This study seeks to elucidate the nature of radiogenomics, detail its pipeline from image 

acquisition to predictive modeling, and examine its applications to various forms of cancer, such as lung, 

breast, and brain cancers. Besides, it touches on the barriers to its broader adoption, such as the lack of 

established imaging protocols and the lack of well-annotated large databases, and offers suggestions for the 

future in an effort to integrate radiogenomics into precision oncology practice. 
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3. Precision Medicine and the Molecular Basis of Cancer 

Precision medicine aims at tailoring treatments to each patient's individualized biological profile, a notion 

that revolutionized cancer treatment (Dagogo-Jack & Shaw, 2018). In essence, cancer is a genomic 

instability disorder, appearing from the accumulation of genetic aberrations resulting in the disruption of 

normal cellular homeostasis. The types of aberrations include point mutations, insertions, deletions, and 

larger chromosomal rearrangements that activate oncogenes like RAS or MYC or inactivate tumor 

suppressor genes like TP53 or RB1 (Hanahan & Weinberg, 2011). In addition to genetic alterations, 

epigenetic changes can also promote tumorigenesis. Epigenetic modifications can silence or increase gene 

expression (increase permissiveness for malignancy) through hypermethylation of promoter regions, 

histone deacetylation or acetylation, and disruption of microRNAs (Jones & Baylin, 2019). 

Decades of genome research have indicated the key oncogenic drivers that are diagnostic and therapeutic 

targets. Genetic mutations in genes such as KRAS, EGFR, and ALK have now been established as biomarkers 

of response to targeted agents, e.g., tyrosine kinase inhibitors, in tumours such as non-small cell lung cancer 

(Herbst et al. 2018). Historically, these genetic datasets were obtained from invasive biopsies of a single 

portion of the tumour at a single time point, which, while a snapshot of the mutational landscape of the 

particular tumour, did not represent the spatial and temporal heterogeneity of the malignancy. 

Radiogenomics offers a promising answer by linking imaging-derived features with such molecular 

alterations, enabling non-invasive monitoring of disease advancement, anticipation of treatment outcomes, 

and tailoring of therapeutic approaches (Grossmann et al., 2017). The combination strengthens the 

paradigm of precision medicine, making it the basis of modern oncology. 

4. The Shift from Radiology to Radiogenomics 

Radiology has been a part of cancer management for over a century, providing clinicians with qualitative 

information regarding tumor characteristics such as size, shape, and anatomical location (Fass, 2008). 

Radiological interpretation previously relied mainly upon the individual experience of radiologists, who 

evaluated qualitative patterns for the diagnosis and stage of disease (Kumar et al., 2012). The development 

of radiomics was a significant step, taking the field in the direction of an objective, data-driven approach. 

Radiomics applies high-throughput computational strategies to extract hundreds of quantitative features—

pixel intensity, texture heterogeneity, and morphological features—derived from imaging data, yielding a 

richer characterization of tumor phenotypes (Lambin et al., 2012). 

Radiogenomics makes this radiomics platform more comprehensive by joining these quantitative imaging 

features with genomic data, building the bridge between the macroscopic visual image of the tumor and its 

microscopic genetic makeup (Rutman & Kuo, 2009). This expansion has been fueled by fast-paced 

technology advancement: high-resolution imaging modalities, next-generation sequencing, and 

sophisticated computational platforms that can manage and process gigantic multi-omics data (Bodalal et 

al., 2019). For example, radiogenomics might reveal how a tumor's abnormal borders on an MRI would be 

linked to malignant gene mutations, providing prognostic data that could not be uncovered by traditional 

radiology alone (Diehn et al., 2008). By transforming radiology into an inductive and predictive science, 

radiogenomics gives entry to a new era in oncology where imaging not only detects cancer but reads its 

molecular drives. 

5. Technological Foundations of Radiogenomics 

The exciting field of radiogenomics is expanding quickly due to advancements in imaging, genomics, and 

computational analysis that help bring together previously disparate data sets to enhance our 

understanding of tumour biology. In genomics, ultrahigh-throughput technologies such as next-generation 

sequencing (NGS), microarrays, and mass spectrometry have revolutionized tumour profiling, allowing 

researchers to analyse genetic and epigenetic mutations with extraordinary detail (Goodwin et al., 2016). 

Simultaneously, new imaging modalities have enhanced the visualization of tumour phenotypes quickly and 

non-invasively. Multimodality imaging technologies such as positron-emission tomography-computed 

tomography (PET-CT), single-photon emission computed tomography (SPECT), and multiparametric 
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magnetic resonance imaging (MRI) provide anatomical and functional detail regarding tumors with 

cellularity, vascularity, and metabolic activity characteristics (Bomanji et al., 2001). For example, diffusion-

weighted MRI (DW-MRI) captures tumor cellularity and density non-invasively in order to monitor 

response to therapy, while fluorodeoxyglucose (FDG)-PET assesses metabolic activity for assessing tumor 

angiogenesis, metabolic behavior, and response to therapy and disease progression (Padhani et al., 2009; 

Juweid & Cheson, 2006). 

Radiogenomics leans on computer resources, as machine learning and deep learning, the workhorses of 

radiogenomics, enable the processing of incomprehensibly complex high-dimensional data (Hosny et al., 

2018). Any number of different machines learning techniques, ranging from random forests to neural 

networks, can detect specific and refined relationships between imaging and genomic data, and in turn, 

allow the identification of new biomarkers that are prognostic for predicted clinical outcomes (LeCun et al., 

2015). Specialized software platforms, such as PyRadiomics, Computational Environment for Radiation 

Research (CERR), and IBEX, can make computing radiomic features affordable, further grouping them into 

morphology (i.e., volume, sphericity), intensity (i.e., gray-level distribution), and dynamic (i.e., temporal 

contrast enhancement) strategies (van Griethuysen et al., 2017; Deasy et al., 2003; Zhang et al., 2015). These 

traits quantify tumor properties that reflect underlying biological processes, such as intratumoral 

heterogeneity and aggressiveness, to enable the development of prediction models for the guidance of 

precision oncology (Parmar et al., 2015). 

6. Radiogenomics Workflow and Methodology 

Radiogenomics is an innovative approach in precision oncology, synergistically combining medical imaging 

and genomic data to generate actionable insight into tumor biology. This multi-step process transforms raw 

imaging data into quantifiable features that are translated to genomic profiles or clinical outcomes and 

enable non-invasive predictions of genetic mutations, treatment responses, and prognosis of a patient. The 

radiogenomics pipeline consists of five interconnected steps: image acquisition, pre-processing, tumor 

segmentation, feature extraction, and predictive modeling (Figure 1). Each step in the process requires 

meticulous attention to detail in identifying the reproducibility and reliability of results, since errors at any 

step will taint the entire analysis. By linking imaging phenotypes to molecular genotypes in an ordered 

fashion, radiogenomics offers a beautiful mechanism for personalizing cancer, reducing reliance on invasive 

diagnostics, and, above all, the capacity to sense the dynamic dynamics of tumors (Aerts et al., 2014). This 

section provides an in-depth description of every phase, its aim, approach, and significance in propelling 

precision oncology. 

 

Figure 1. Radiogenomics workflow overview. 
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6.1.  Image Acquisition 

The radiogenomics pipeline begins with image acquisition, a critical phase establishes quality and data 

range for future application in analyses. Quality imaging is paramount to record the tumor characteristics—

size, shape, texture, and metabolic activity—which will be later matched with genomic alterations. Modality 

selection is rendered specific to the cancer type and the biology being inquired about, and each modality 

has its own unique advantages. Computed Tomography (CT) scan, for example, produces highly detailed 

images of anatomical structure and thus has a unique niche in characterizing tumor morphology in 

neoplasms like lung or pancreatic cancer (Kumar et al., 2012). Magnetic Resonance Imaging (MRI) 

surpasses traditional soft tissue contrast and functional imaging and is therefore the ultimate modality for 

a spectrum of cancers, including prostate, breast, and brain cancer. Imaging protocols such as diffusion 

weighted imaging (DWI) portray tumor cellularity, and dynamic contrast-enhanced (DCE) MRI allow for 

vascular parameter quantification, yielding information on the dynamics of the tumor microenvironment 

(Padhani et al., 2009). Positron Emission Tomography (PET), especially in hybrid imaging with computed 

tomography (CT) as PET-CT, is a method of monitoring the metabolic function following the administration 

of radiotracers such as fluorodeoxyglucose (FDG) that have unique uses, especially for the assessment of 

tumor aggressiveness and response to therapy for neoplasms such as lymphoma and head and neck cancer 

(Miles et al., 2012). 

The use of multimodal imaging is rapidly growing (e.g., PET-MRI) as an effort to best exploit the biological 

information. PET-MRI utilizes a single PET and MRI session to allow the metabolic PET data to integrate 

anatomy and functional information from MRI and create a comprehensive dataset for radiogenomic 

investigations. PET-MRI can measure glucose metabolism and the tissue microstructure in glioblastoma 

studies, allowing for an n-dimensional description of the tumor (Bailey et al., 2015). Functional imaging 

methods further augment this phase. DWI-MRI quantifies tissue water diffusion, which is related to tumor 

density and aids in treatment planning, while FDG-PET quantifies metabolic changes reflecting disease 

growth or treatment efficacy (Gillies et al., 2016). The strategic selection of imaging modalities is therefore 

essential as it dictates the tumor features that can be quantified and related to genomic data in the follow-

up process. 

6.2.  Pre-Processing Techniques 

Raw imaging data, though informative, is typically compounded by inconsistencies due to scanner variation, 

image protocol variation, or patient-specific reasons such as motion or contrast uptake. These difficulties 

are addressed via pre-processing by taking the data to a common denominator so that it becomes sufficient 

for strong and reproducible analysis. This is done through a series of primary techniques. Image 

registration aligns images of different modalities (e.g., PET and CT) or time points (e.g., pre- and post-

treatment images) so they are anatomically identical, a necessity for longitudinal tumor growth analyses of 

tumors, such as in the surveillance of lung cancer. Intensity normalization normalizes differences in 

pixel/voxel intensity scales caused by scanner settings or contrast agents, so features are intersubject and 

interinstitution comparable. Filter techniques, such as Gaussian filters to denoise or edge-detection filters 

to enhance the edges of tumors, enhance the signal-to-noise ratio and hence improve the accuracy of follow-

up analysis (Zwanenburg et al., 2020). 

Pre-processing is very important for minimizing artifacts that can obscure biological signals, e.g., scanner 

noise or patient motion during imaging. However, heterogeneity of pre-processing between studies has long 

marred radiogenomics research. To address this, the Image Biomarker Standardization Initiative (IBSI) has 

come up with standardized protocols and reference values for normalization, filtering, and other pre-

processing operations, which foster reproducibility and enable comparability across studies (Zwanenburg 

et al., 2016). These efforts are vital in making radiogenomics an off-the-shelf clinical application from a 

research tool, making imaging data consistent and reliable for later feature extraction and modeling. 
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6.3.  Tumor Segmentation 

Segmentation of the tumor is an important part of the radiogenomics process in that it is employed to define 

the tumor within the imaging data so that the region of interest (ROI) to be analyzed can be discerned. 

Segmentation properly enables subsequent feature extraction to be focused on the tumor proper and not 

on surrounding tissues. Errors at this stage will lead to wrong features and inaccurate predictions, and 

hence segmentation plays a crucial role in determining the success of the workflow (Hatt et al., 2017). Three 

primary techniques are used, each striking a balance between accuracy, speed, and scalability. Manual 

segmentation relies on the skillful radiologists to delineate the tumor boundaries from image slices, which 

can be very accurate but labor-intensive and prone to inter-observer variation—various experts may mark 

the same tumor slightly differently, affecting consistency (Kumar et al., 2012). Semi-automatic 

segmentation combines human expertise with computer processes, in which a clinician sets initial points, 

and an algorithm continuously refines the edges based on image characteristics like intensity gradients, 

reducing effort and variability (Veeraraghavan et al., 2018). Machine learning and particularly deep 

learning architectures like convolutional neural networks (CNNs) power automatic segmentation, quickly 

and accurately handling large sets of data, and hence it is the most suitable choice for high-throughput 

studies. These approaches, having been trained on annotated images, detect tumor borders at a high degree 

of accuracy (Kamnitsas et al., 2017). 

Modern computer platforms such as 3D Slicer and DeepMind enhance segmentation by incorporating the 

deep learning feature and user interfaces, accelerating the process (Fedorov et al., 2012; Gibson et al., 

2018). For instance, in a study on breast cancer, CNN segmentation can automatically delineate tumors in 

hundreds of MRI images in a matter of hours, which would take weeks manually. Study size, available 

resources, and required accuracy determine the segmentation method, but automation is increasingly 

favored for its speed and reproducibility, paving the way for large-scale radiogenomic studies. 

6.4.  Feature Extraction 

Following tumor segmentation, feature extraction quantifies its imaging features to provide a radiomic 

features dataset that describes the tumor's phenotype. They are the imaging-genomics bridge that defines 

biological properties like heterogeneity, vascularity, or aggressiveness with the potential to be linked to 

genetic mutations. Radiomic features can be categorized into several types. Morphological features 

measure the physical form of the tumor, for example, volume, surface area, sphericity, or compactness—

abnormal shape might indicate invasive growth related to specific mutations. Intensity-based features 

analyze the voxel/pixel intensity profile within the ROI, for example, mean intensity, skewness, or entropy, 

where high entropy might indicate necrosis or cellularity of the tumor. Texture characteristics measure 

spatial frequency patterns of intensity, and intratumoral heterogeneity is revealed by measurements such 

as gray-level co-occurrence matrices (GLCM) or gray-level run-length matrices (GLRLM). It is generally 

associated with aggressive biology or treatment resistance (Davnall et al., 2012). Dynamic imaging 

characteristics, acquired from time-series imaging like DCE-MRI or PET, track contrast uptake or 

metabolism over time, with early washout of contrast indicating high vascularity and thus a marker of 

tumor angiogenesis (Miles et al., 2012). 

Sophisticated platforms like PyRadiomics, CERR, and IBEX normalize feature extraction to make 

calculations consistent across studies and reduce variability (van Griethuysen et al., 2017; Apte et al., 2018; 

Zhang et al., 2015). In a case of lung cancer research, for example, PyRadiomics might extract over 1,000 

features from a single CT scan, creating a high-dimensional dataset that captures the tumor's complexity. 

These features form the foundation of downstream analyses, enabling researchers to uncover imaging 

phenotypes and genomic or clinical associations. 

6.5.  Predictive Modeling 

The final step of the radiogenomics pipeline is predictive modeling, where radiomic features are used to 

create models predictive of genomic profiles or clinical endpoints, such as survival, response to treatment, 

or status for genetic mutations. The method engages statistical and machine learning techniques to identify 
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meaningful associations in high-dimensional complex radiomic data. Two leading approaches are utilized. 

Exploratory analyses contrast a broad range of imaging features with genomic variables to discover novel 

associations, and statistical controls like the false discovery rate (FDR) are required to prevent spurious 

positives due to multiple testing (Benjamini & Hochberg, 1995). Techniques like PCA can be used to reduce 

data by extracting informative patterns in features. Hypothesis-driven research, in contrast, focuses on pre-

specified relationships, e.g., do specific MRI texture features predict KRAS mutations in colorectal cancer, 

leveraging prior biological insight to inform analysis (Konstantinidis et al., 2019). 

Machine learning techniques, including support vector machines (SVMs), random forests, and neural 

networks, are applied most frequently to model the non-linear relationships in radiomic data (Parmar et 

al., 2015). For instance, a random forest model might combine PET-CT texture and dynamic information to 

predict EGFR mutation status in lung cancer patients as a non-invasive alternative to biopsy. Model 

performance is rigorously tested by using techniques such as k-fold cross-validation or external cohorts to 

determine generalizability and clinical utility (Vickers & Elkin, 2006). These confirmed models make 

radiogenomics a tangible clinical instrument, making predictions of genetic mutations (e.g., IDH1 in 

gliomas), therapy responsiveness, or patient survival possible without invasive testing, thus opening the 

door for individualized cancer treatment (Aerts et al., 2014). 

7. Applications of Radiogenomics Across Cancer Types 

Lung cancer is still one of the leading causes of cancer-related mortality worldwide, and it represents a high 

amount of genetic heterogeneity that complicates treatment decisions. Multiple investigations of genetic 

alterations in EGFR and KRAS are trying to find principles for guiding NSCLC treatment decisions with 

targeted agents such as tyrosine kinase inhibitors (Herbst et al., 2018). Radiogenomics has emerged as a 

groundbreaking technology for this purpose, relying on imaging data to non-invasively predict such 

alterations. Radiomic CT-derived texture and shape feature signatures have been shown to accurately 

predict the EGFR mutation status of NSCLC patients and enable clinicians to stratify patients for target 

therapy based on this without requiring invasive biopsies (Aerts et al., 2014). Similarly, PET imaging by 

fluorodeoxyglucose (FDG) also provides texture characteristics linked with KRAS mutations and 

information regarding tumor aggressiveness with an input to treatment planning (Yip et al., 2017). These 

radiogenomic approaches can potentially not only allow for less use of invasive techniques but also allow 

for repeat testing and capture changes in lung tumor behavior over time. As radiogenomics seeks to link 

imaging features to molecular signatures, it can enhance specificity in lung cancer therapy by providing 

patient-specific therapeutic options that maximize clinical outcomes. 

Breast cancer is a heterogeneous cancer, with different biological and molecular subtypes (luminal, HER2-

enriched, and triple negative) that provide information on treatment and prognosis. Radiogenomics is 

important to this area as it correlates MRI characteristics with molecular subtypes and genetic signatures 

(e.g. BRCA1/2 alterations, associated with familial breast cancer) (Li et al, 2019). Quantitative radiomic 

signatures from MRI are able to distinguish between breast cancer subtypes using features, or component 

characteristics, such as tumor heterogeneity, irregularity of edges, and contrast enhancement patterns. For 

instance, heterogeneous patterns of texture from dynamic contrast-enhanced (DCE)-MRI of the tumor have 

been seen in association with triple-negative breast cancer, which is an aggressive subtype with fewer 

treatment options (Braman et al., 2017). While radiogenomics can provide information on tumor 

characterization, it can also be relevant for predicting response to immunotherapy. Changes in imaging 

biomarkers (e.g., peritumoral texture) are associated with the presence of immune cells and provide the 

opportunity to predict a patient's immune checkpoint inhibitor response in a non-invasive manner (Wu et 

al., 2019). This capability enhances the clinical usefulness of radiogenomics in breast cancer as a non-

invasive decision-making tool for personalized treatment decision-making, tracking therapy response, and 

managing treatment for patients with different molecular phenotypes. 

Gliomas, the most common type of primary brain cancers, are highly genetically heterogeneous tumors, 

with IDH1 mutation and MGMT promoter methylation as key prognostic markers and therapeutic targets 

(Louis et al., 2016). The concept of radiogenomics has transformed glioma management as it links anatomic 



7429 https://reviewofconphil.com 

MRI-based characteristics to genetic mutations, therefore providing a non-invasive alternative to serial 

biopsy. For example, T2-weighted or FLAIR MR sequence texture characteristics have shown strong 

correlations with IDH1 mutations, which are favorable prognostics with low-grade gliomas (Ellingson et al., 

2013). Similarly, there are radiomic features from contrast-enhanced MRI that predict MGMT methylation 

status, a biomarker of sensitivity to alkylating agents such as temozolomide (Kickingereder et al., 2016). 

Through these correlations, MDs and oncologists can non-invasively stratify their patients into 

personalized care cohorts. By depicting glioma's spatial-temporal heterogeneity, radiogenomics can be 

used to delineate longitudinal disease evolution and treatment response. Radiogenomics offers a 

progressive approach to brain tumor management that aligns with the principles of precision oncology. 

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are commonly diagnosed liver 

cancers that often pose different genetic and clinical challenges for clinicians. Radiogenomics has emerged 

as very promising in these cancers, using CT and MRI signatures to predict important prognostic and 

therapeutic variables. For example, in HCC, radiomic signatures such as tumor margin irregularity and 

texture heterogeneity have been assessed to predict microvascular invasion, a key factor in predicting 

tumor behavior and recurrence risk following surgical resection or transplantation (Banerjee et al., 2015). 

In ICC, radiologic features such as contrast-enhanced CT patterns of enhancement relate to genomic 

profiles, which identify actionable therapy targets like FGFR2 fusions or IDH1 mutations (Konstantinidis et 

al., 2019). These processes allow for the better risk stratification in order to provide personalized treatment 

recommendations – surgical resection, ablation, or targeted agents – in the context of tumor molecular and 

imaging characteristics. By providing a non-invasive method of assessing tumor biology, radiogenomics 

ultimately provides a platform for precision medicine in liver cancer that targets patient-centered clinical 

outcomes via personalized risk stratification and treatment recommendations. 

8. Challenges in Radiogenomics 

One of the biggest challenges for broader implementation of radiogenomics is the absence of standardized 

image acquisition protocols, tumor segmentation algorithms, and feature extraction methodologies. Each 

institutional imaging hardware, scanner parameters, and analysis software will result in significant 

variability that impedes the reproducibility of radiogenomic results (Traversi et al., 2020). Variability in CT 

contrast protocols during pre-scan preparation for an imaging study or variability in the selection of MRI 

sequence parameters affects the image's extracted radiomic features, allowing variation in results across 

institutions. There is also significant variability when it comes to segmentation, whether completed 

manually, semi-automatically or automatically, all of which will change the reliability of feature extraction 

and create challenges for cross-study comparisons. To help overcome issues relating to variability, there 

have been initiatives like the Image Biomarker Standardization Initiative (IBSI), that published guidelines 

to enable defining radiomic features in a standard way, and also provided image pre-processing and analysis 

protocols that all imaging sites can follow to help ensure consistency and reproducibility (Zwanenburg et 

al, 2020). This is important to build trust in radiogenomics models and participate into the clinical 

workflow seamlessly. 

Radiogenomics studies typically deal with retrospective datasets with small populations that raise issues 

of overfitting and reduced generalizability. Small cohorts have been known to miss the complete spectrum 

of tumor heterogeneity and lead to highly performing models on training sets but not on new groups (Gillies 

et al., 2016). Retrospective studies are also subject to selection bias because they will include only patients 

with available imaging and genomic data, resulting in biased conclusions. In order to mitigate these 

limitations of retrospective studies, there needs to be an urgent fund of prospective trials at scale and 

multicenter studies with diverse patient populations using standardized data collection systems. Open-

access data repositories like The Cancer Imaging Archive (TCIA) are an important resource by providing 

access to carefully curated imaging and clinical data sets so that researchers can try models on larger 

cohorts (Clark et al., 2013). Collaborative effort on the construction of large, heavily annotated databases 

will be essential to enhance the robustness and usability of radiogenomic models (Lambin et al., 2017). 
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The complexity of radiogenomic models is one of the key barriers towards their utilization in clinical 

settings. Highly complex high-dimensional radiomic features and highly complex machine learning models 

could complicate biological interpretation of outcomes, making it challenging for clinicians to interpret and 

trust these models (Reyes et al., 2020). A model used to predict EGFR mutation status from radiomic 

features numbering in the hundreds may lack transparent, intuitive meaning for a practicing oncologist, 

and its uptake into decision-making workflows will be challenging. Furthermore, radiogenomics needs to 

integrate seamlessly with current clinical infrastructure, such as electronic health records and imaging 

systems, to be effective in routine practice. To address many of the aforementioned challenges, it is vital to 

create software that clinicians will embrace while producing interpretable outcomes, such as visual 

dashboards or biomarker scores that can readily be explained to patients (Shimizu & Nakayama, 2021). 

Training and education activities that prepare clinicians to engage with radiogenomics and their application 

in clinical practice, and to promote the collaborative relationship between radiologists, oncologists, and 

data scientists will also be important for greater uptake. 

9. Future Perspective 

Standardization is the foundation of radiogenomics' future, and ongoing initiatives are laying the 

groundwork for more regular and reproducible studies. The Image Biomarker Standardization Initiative 

(IBSI) and the Quantitative Imaging Biomarkers Alliance (QIBA) are leading the way in standardizing image 

acquisition, feature extraction, and analysis protocols, controlling scanner and institution variability 

(Sullivan et al., 2015; Zwanenburg et al., 2020). Moreover, reporting items such as the Transparent 

Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) enhance 

quality and transparency in studies and ensure radiogenomic research is undertaken to sufficient scientific 

standards (Moons et al., 2015). Consequently, they will facilitate the generalizability of radiogenomic 

models across centers, generate confidence in the clinical utility of these models, and expedite their 

translation into clinical practice. 

In addition, emerging imaging methods, such as chemical exchange saturation transfer (CEST) or blood 

oxygen level-dependent (BOLD) MRI, will increase radiogenomic databases with new attributes of tumor 

biology, including pH or oxygen status (Padhani et al., 2009). Integration of multi-omics approaches - 

genomic/ proteomic/ metabolomic data with imaging, will further improve understanding of complex 

biological relationships (Jiang et al., 2019). Concurrently, innovation in artificial intelligence and deep 

learning is changing the landscape of radiogenomics, as these approaches automate feature extraction, 

reduce reliance on hand-designed features, and demonstrate new relationships that may fail to be seen 

without them (Hosny et al., 2018). Nevertheless, the AI models must marry complexity with interpretability 

to ensure clinical usability (Bi et al., 2019). The successful construction of sufficiently large, high-quality 

datasets will be important for the training of high-quality AI models; this highlights the importance of multi-

institutional and collaborative research. 

The ultimate long-term goal of radiogenomics is to be implemented in the clinical setting and ideally used 

to inform real-time clinical decision making for cancer care. Multicenter large-scale clinical trials will be 

required to validate radiogenomic models against conventional diagnostic methods, such as biopsies, and 

demonstrate their value added in terms of accuracy and outcomes (Topol, 2019). Development of clinician 

interfaces that are simple to use—e.g., decision support tools that present radiogenomic predictions in 

naturalistic form—will bridge the divide between practice and research. International collaborations, 

supported by institutions like the Radiological Society of North America (RSNA) and global cancer research 

networks, will drive these efforts by promoting data sharing and method harmonization. Once the 

challenges we've mentioned above have been solved, radiogenomics can become a key aspect of precision 

oncology, assisting with early detection, planning treatments, and tracking and monitoring response.  

10. Conclusion 

Radiogenomics has been a revolutionary step forward in precision oncology, providing a non-invasive, low-

cost solution to understand the intricacies of tumor biology. Radiogenomics offers insights into whole-

tumor heterogeneity with quantitative imaging characteristics, providing predictive and prognostic 
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information important to personalized medicine, unlike traditional biopsies, which offer thin slices of 

tumor genetics. Radiogenomics is relevant across cancers, from EGFR mutation prediction in lung cancer 

to immunotherapy modulation in breast cancer to genetic marker stratification of gliomas. Although 

fraught with potential, radiogenomics is confronted with standardization barriers, data limitations, and the 

need for clinician-readable resources. Nevertheless, ongoing endeavors in standardization, imaging, and AI 

technology development, and collaborative research initiatives pose to dismantle these challenges. With 

the growth of radiogenomics, it can potentially revolutionize cancer care, nicely filling in clinical practices 

to enable earlier detection, improved treatment planning, and enhanced patient care through data-driven, 

patient-specific methods. 
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 الطب الشخصي في علاج الأورام بالإشعاع: نظرة شاملة حول الاستراتيجيات الحالية والاتجاهات الناشئة 

 الملخص 

جية  أدت إضافة علم الجينوم والطب الدقيق إلى تمهيد الطريق أمام مشهد جديد في أبحاث الأورام، حيث أصبح من الممكن الآن تصميم أساليب علا

علماً ناشئاً يجمع بين التصوير   (Radiogenomics) التخصيص بناءً على الخصائص الجينية والظاهرية للمرضى. يعُد الراديو جينوميكسشديدة  

جينوميكس،  الشعاعي والمعلومات الجينومية، مما يوفر رؤية غير جراحية للأساس الجزيئي لبيولوجيا الورم. تقدم هذه الورقة نظرة شاملة عن الراديو  

ن خلال تطبيق ميزات التصوير الكمي مثل شكل متتبعةً أصوله من الأشعة التقليدية، واصفةً أساليبه، وتقيم تطبيقاته الهامة في علاج السرطان. م

يحُسن  الورم، وملمسه، ونشاطه الأيضي، وربطها بالتوقيعات الجينومية، يعزز الراديو جينوميكس حساسية تشخيص السرطان، ويحسن تقييم النتائج، و

هميتها تخطيط العلاج. نقدم العملية الكاملة للراديو جينوميكس من الحصول على الصورة واستخراج الميزات، إلى بناء نماذج تنبؤية، ونؤكد على أ

تحديات مثل الحاجة   الانتقالية لأنواع متعددة من السرطان مثل سرطان الرئة والثدي والدماغ. بالإضافة إلى وعوده الواعدة، يواجه الراديو جينوميكس

جاهات  إلى بروتوكولات معيارية، ونقص البيانات، وصعوبة دمج مجموعات البيانات متعددة الأوميكس. تتجاوز هذه المقالة تلك الصعوبات وتقترح ات

 .ي طب الأورام الدقيقمستقبلية، مثل دمج الذكاء الاصطناعي والجهود متعددة المراكز لدفع الترجمة السريرية للراديو جينوميكس وتثبيته ف
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